Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2019

30.08.2018

Wall Oscillation Induced Drag Reduction Zone in a Turbulent Boundary Layer

verfasst von: Martin Skote, Maneesh Mishra, Yanhua Wu

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spanwise oscillation applied on the wall under a turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall-forcing produces a considerable drag reduction (DR) over the region where oscillation occurs. Three simulations with identical oscillation parameters have been performed at different Reynolds numbers with one of them replicating the experiment by Ricco and Wu (Exp. Therm. Fluid Sci. 29, 41–52, 2004). The downstream development of DR in the numerical simulation and experiment is nearly identical. The velocity profiles and the indicator function are investigated with respect to the variation in DR and Reynolds number. The DR affects the slope of the logarithmic part of the velocity profile in accordance with previous theoretical findings. Low speed streaks are visualized and the bending of longitudinal vortices related to the drag reduction phenomenon is discussed. In addition, the visualization is compared with the corresponding results from the experiments. The spatial transient of the DR before reaching its maximum value is analyzed and is found to vary linearly with the oscillation period. An analysis of the energy budget is presented and the fundamental differences compared to the streamwise homogeneous channel flow are elucidated. While the power budget improves with increasing Reynolds number, it is shown that the net power remains negative for the wall forcing parameters considered here, even under ideal conditions. On the other hand, the analysis together with channel and boundary layer flow data in the literature provides an estimation of net energy saving for boundary layer flows which depends on the streamwise extent of the oscillating zone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Karniadakis, G.E., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)MathSciNetCrossRefMATH Karniadakis, G.E., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef
3.
Zurück zum Zitat Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)CrossRefMATH Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)CrossRefMATH
4.
Zurück zum Zitat Choi, J.I., Xu, C.X., Sung, H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)CrossRef Choi, J.I., Xu, C.X., Sung, H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)CrossRef
5.
Zurück zum Zitat Quadrio, M., Ricco, P.: Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul. 4, 7 (2003)CrossRef Quadrio, M., Ricco, P.: Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul. 4, 7 (2003)CrossRef
6.
Zurück zum Zitat Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH
7.
Zurück zum Zitat Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH
8.
Zurück zum Zitat Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26(085109) (2014) Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26(085109) (2014)
9.
Zurück zum Zitat Xu, C.X., Huang, W.X.: Transient response of reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Phys. Fluids 17(1), 018101 (2005)CrossRefMATH Xu, C.X., Huang, W.X.: Transient response of reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Phys. Fluids 17(1), 018101 (2005)CrossRefMATH
10.
Zurück zum Zitat Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 601–612 (2008)CrossRef Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 601–612 (2008)CrossRef
11.
Zurück zum Zitat Ricco, P., Ottonelli, C., Hasegawa, Y., Quadrio, M.: Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77–104 (2012)MathSciNetCrossRefMATH Ricco, P., Ottonelli, C., Hasegawa, Y., Quadrio, M.: Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77–104 (2012)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)CrossRef
13.
Zurück zum Zitat Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)CrossRef
14.
Zurück zum Zitat Laadhari, F., Skandaji, L., Morel, R.: Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6, 3218–3220 (1994)CrossRef Laadhari, F., Skandaji, L., Morel, R.: Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6, 3218–3220 (1994)CrossRef
15.
Zurück zum Zitat Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530–2542 (2002)CrossRefMATH Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530–2542 (2002)CrossRefMATH
16.
Zurück zum Zitat Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5(024) (2004) Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5(024) (2004)
17.
Zurück zum Zitat Choi, K.S., DeBisschop, J.R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef Choi, K.S., DeBisschop, J.R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef
18.
Zurück zum Zitat Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29, 41–52 (2004)CrossRef Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29, 41–52 (2004)CrossRef
19.
Zurück zum Zitat Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)CrossRef Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)CrossRef
20.
Zurück zum Zitat Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12(9), 1–17 (2011)MathSciNet Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12(9), 1–17 (2011)MathSciNet
21.
Zurück zum Zitat Mishra, M., Skote, M.: Drag reduction in turbulent boundary layers with half wave wall oscillations. Math. Probl. Eng. 2015, 253249 (2015)MATH Mishra, M., Skote, M.: Drag reduction in turbulent boundary layers with half wave wall oscillations. Math. Probl. Eng. 2015, 253249 (2015)MATH
22.
Zurück zum Zitat Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)CrossRef Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)CrossRef
23.
Zurück zum Zitat Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Skote, M., Mishra, M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Int. J. Aerospace Eng. 2015 (891037) (2015) Skote, M., Mishra, M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Int. J. Aerospace Eng. 2015 (891037) (2015)
25.
Zurück zum Zitat Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)CrossRef Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)CrossRef
26.
Zurück zum Zitat Skote, M.: Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. Int. J. Heat Fluid Flow 50, 352–358 (2014)CrossRef Skote, M.: Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. Int. J. Heat Fluid Flow 50, 352–358 (2014)CrossRef
27.
Zurück zum Zitat Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the reynolds number. Phys. Fluids 25(12), 125109 (2013)CrossRef Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the reynolds number. Phys. Fluids 25(12), 125109 (2013)CrossRef
28.
Zurück zum Zitat Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)MathSciNetCrossRef Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)MathSciNetCrossRef
29.
Zurück zum Zitat Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)MathSciNetCrossRef Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)MathSciNetCrossRef
30.
Zurück zum Zitat Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: Simson—a pseudo-spectral solver for incompressible boundary layer flows. Technical report, TRITA-MEK 2007:07, KTH Mechanics, Stockholm, Sweden (2007) Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: Simson—a pseudo-spectral solver for incompressible boundary layer flows. Technical report, TRITA-MEK 2007:07, KTH Mechanics, Stockholm, Sweden (2007)
31.
Zurück zum Zitat Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH
32.
Zurück zum Zitat Smits, A., Matheson, N., Joubert, P.: Low-reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27, 147–157 (1983) Smits, A., Matheson, N., Joubert, P.: Low-reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27, 147–157 (1983)
33.
Zurück zum Zitat Nagib, H., Chauhan, K., Monkewitz, P.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A 365, 755–770 (2007)CrossRefMATH Nagib, H., Chauhan, K., Monkewitz, P.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A 365, 755–770 (2007)CrossRefMATH
34.
Zurück zum Zitat Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. In: AIAA Paper 97-1870, 28th AIAA Fluid Dynamics Conference, pp. 1–10. 4th AIAA Shear Flow Control Conference (1997) Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. In: AIAA Paper 97-1870, 28th AIAA Fluid Dynamics Conference, pp. 1–10. 4th AIAA Shear Flow Control Conference (1997)
35.
Zurück zum Zitat Skote, M., Mishra, M., Negi, P.S., Wu, Y., Lee, H.M., Schlatter, P.: Wall oscillation induced drag reduction of turbulent boundary layers. In: Peinke, J., et al. (eds.) Progress in Turbulence VI, pp. 161–165. Springer International Publishing (2016) Skote, M., Mishra, M., Negi, P.S., Wu, Y., Lee, H.M., Schlatter, P.: Wall oscillation induced drag reduction of turbulent boundary layers. In: Peinke, J., et al. (eds.) Progress in Turbulence VI, pp. 161–165. Springer International Publishing (2016)
36.
Zurück zum Zitat Xia, Q.J., Huang, W.X., Xu, C.X., Cui, G.X.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47(2), 025503 (2015)CrossRef Xia, Q.J., Huang, W.X., Xu, C.X., Cui, G.X.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47(2), 025503 (2015)CrossRef
37.
Zurück zum Zitat Stroh, A., Hasegawa, Y., Schlatter, P., Frohnapfel, B.: Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303–321 (2016)MathSciNetCrossRef Stroh, A., Hasegawa, Y., Schlatter, P., Frohnapfel, B.: Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303–321 (2016)MathSciNetCrossRef
38.
Zurück zum Zitat Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to R e 𝜃 = 8300. Int. J. Heat Fluid Flow 47, 57–69 (2014)CrossRef Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to R e 𝜃 = 8300. Int. J. Heat Fluid Flow 47, 57–69 (2014)CrossRef
39.
Zurück zum Zitat Mishra, M.K.: Numerical studies of turbulent flows. Ph.D. thesis, Nanyang Technological University (2015) Mishra, M.K.: Numerical studies of turbulent flows. Ph.D. thesis, Nanyang Technological University (2015)
40.
Zurück zum Zitat Bandyopadhyay, P.: Stokes mechanism of drag reduction. J. Appl. Mech. Trans. ASME 73(3), 483–489 (2006)CrossRefMATH Bandyopadhyay, P.: Stokes mechanism of drag reduction. J. Appl. Mech. Trans. ASME 73(3), 483–489 (2006)CrossRefMATH
41.
Zurück zum Zitat Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)
43.
44.
Zurück zum Zitat Choi, K.S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef Choi, K.S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef
45.
Zurück zum Zitat Quadrio, M., Sibilla, S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424(-1), 217–241 (2000)CrossRefMATH Quadrio, M., Sibilla, S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424(-1), 217–241 (2000)CrossRefMATH
46.
Zurück zum Zitat Quadrio, M., Ricco, P.: The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135–157 (2011)MathSciNetCrossRefMATH Quadrio, M., Ricco, P.: The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135–157 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
Wall Oscillation Induced Drag Reduction Zone in a Turbulent Boundary Layer
verfasst von
Martin Skote
Maneesh Mishra
Yanhua Wu
Publikationsdatum
30.08.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9979-2

Weitere Artikel der Ausgabe 3/2019

Flow, Turbulence and Combustion 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.