Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2019

07.08.2018

Least Squares Minimization Closure Models for LES of Turbulent Combustion

verfasst von: Conrad H. Patton, Jack R. Edwards

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work summarizes the development and testing of a new family of chemical closure models for large-eddy simulation (LES) of turbulent combustion using finite-rate chemistry. The goal of this research is to provide a simple, yet effective model that provides a correction to the ‘laminar chemistry’ prediction formed by evaluating chemical production terms using filtered-mean data. The general model takes the form \(\overline {\dot {{\omega }}_{s} (q)} =f(\overline {{q}},{\Delta } ,{\ldots } )\dot {{\omega }}_{s} (\overline {{q}})\), where the enhancement factor, f, accounts for the effects of the subgrid fluctuations on apparent reactivity as expressed at a given mesh level. A form for the enhancement factor is derived by least-squares minimization (LSM) of a ‘reactivity functional’ connecting information at different mesh levels. A modified a priori analysis, in which simultaneous large-eddy simulations are performed on fine and coarse mesh levels, is used to identify candidate modeled forms for the enhancement factor. In the modified a priori analysis, coarse-mesh realizations are constrained by the filtered fine-mesh velocity, allowing eddy structures to be highly correlated. Several LSM variants are described and tested through comparisons with experimental data. The test cases include three experiments conducted at the University of Virginia’s supersonic combustion facility involving non-premixed hydrogen and partially-premixed ethylene combustion as well as a premixed propane-air flame in the Volvo Validation Rig. The results demonstrate the capability of the models to provide a consistent (if modest in some cases) improvement in predictive capability, relative to ‘laminar chemistry’, in a cost-effective manner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Pierce, C.D.: Progress variable approach for large-eddy simulation of turbulent combustion. PhD. Dissertation, Mechanical Engineering, Stanford University (2001) Pierce, C.D.: Progress variable approach for large-eddy simulation of turbulent combustion. PhD. Dissertation, Mechanical Engineering, Stanford University (2001)
2.
Zurück zum Zitat Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155, 70–89 (2008)CrossRefMATH Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155, 70–89 (2008)CrossRefMATH
3.
Zurück zum Zitat Larsson, J.: Large eddy simulation of the HyShot II scramjet combustor using a supersonic flamelet model. AIAA Paper 2012-4261 (2012) Larsson, J.: Large eddy simulation of the HyShot II scramjet combustor using a supersonic flamelet model. AIAA Paper 2012-4261 (2012)
4.
Zurück zum Zitat Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)MathSciNetCrossRefMATH Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Gou, X., Sun, W., Chen, Z., Ju, Y.: A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame 157, 1111–1121 (2010)CrossRef Gou, X., Sun, W., Chen, Z., Ju, Y.: A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame 157, 1111–1121 (2010)CrossRef
6.
Zurück zum Zitat Candler, G.V., Subbareddy, P.K., Nompelis, I.: Decoupled implicit method for aerothermodynamics and reacting flows. AIAA J. 51, 1245–1254 (2013)CrossRef Candler, G.V., Subbareddy, P.K., Nompelis, I.: Decoupled implicit method for aerothermodynamics and reacting flows. AIAA J. 51, 1245–1254 (2013)CrossRef
7.
Zurück zum Zitat Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. J. Comp. Phys. 295, 740–769 (2015)MathSciNetCrossRefMATH Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. J. Comp. Phys. 295, 740–769 (2015)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)CrossRefMATH Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)CrossRefMATH
9.
Zurück zum Zitat Valino, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)CrossRefMATH Valino, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)CrossRefMATH
10.
Zurück zum Zitat Dodoulas, A., Navarro-Martinez, S.: Large-eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turbul. Combust. 90, 654–678 (2013)CrossRef Dodoulas, A., Navarro-Martinez, S.: Large-eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turbul. Combust. 90, 654–678 (2013)CrossRef
11.
Zurück zum Zitat Koo, H., Donde, P., Raman, V.: A quadrature-based LES/transported probability density function approach for modeling supersonic combustion. Proc. Combust. Inst. 33, 2203–2210 (2011)CrossRef Koo, H., Donde, P., Raman, V.: A quadrature-based LES/transported probability density function approach for modeling supersonic combustion. Proc. Combust. Inst. 33, 2203–2210 (2011)CrossRef
12.
Zurück zum Zitat Menon, S., McMurtry, P.A., Kerstein, A.R.: A linear eddy subgrid model for turbulent combustion - Application to premixed combustion. AIAA Paper 1993-0107 (1993) Menon, S., McMurtry, P.A., Kerstein, A.R.: A linear eddy subgrid model for turbulent combustion - Application to premixed combustion. AIAA Paper 1993-0107 (1993)
13.
Zurück zum Zitat Echekki, T., Kerstein, A.R., Dreeben, T.D.: One dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)CrossRef Echekki, T., Kerstein, A.R., Dreeben, T.D.: One dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)CrossRef
14.
Zurück zum Zitat Menon, S., Kerstein, A.: The linear-eddy model. In: Turbulent Combustion Modeling, pp 221–247. Springer, Berlin (2011) Menon, S., Kerstein, A.: The linear-eddy model. In: Turbulent Combustion Modeling, pp 221–247. Springer, Berlin (2011)
15.
Zurück zum Zitat Ranjan, R., Murilidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188, 1496–1537 (2015)CrossRef Ranjan, R., Murilidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188, 1496–1537 (2015)CrossRef
16.
Zurück zum Zitat Berglund, M., Fedina, E., Fureby, C., Tegner, J.: Finite rate chemistry large-eddy simulation of self-ignition in a supersonic combustion ramjet. AIAA J. 48, 540–550 (2010)CrossRef Berglund, M., Fedina, E., Fureby, C., Tegner, J.: Finite rate chemistry large-eddy simulation of self-ignition in a supersonic combustion ramjet. AIAA J. 48, 540–550 (2010)CrossRef
17.
Zurück zum Zitat Sabelnkov, V., Fureby, C.: Extended LES-PASR model for simulation of turbulent combustion. Prog. Propuls. Phys. 4, 539–568 (2013)CrossRef Sabelnkov, V., Fureby, C.: Extended LES-PASR model for simulation of turbulent combustion. Prog. Propuls. Phys. 4, 539–568 (2013)CrossRef
19.
Zurück zum Zitat Potturi, A., Edwards, J.: Investigation of subgrid closure models for finite-rate scramjet combustion. AIAA Paper 2013-2461 (2013) Potturi, A., Edwards, J.: Investigation of subgrid closure models for finite-rate scramjet combustion. AIAA Paper 2013-2461 (2013)
20.
Zurück zum Zitat Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)CrossRefMATH Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)CrossRefMATH
21.
Zurück zum Zitat Legier, J., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, Center for Turbulence Research, pp 157–168 (2000) Legier, J., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, Center for Turbulence Research, pp 157–168 (2000)
22.
Zurück zum Zitat Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef
23.
Zurück zum Zitat Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation. Combust. Flame 131, 181–197 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation. Combust. Flame 131, 181–197 (2002)CrossRef
24.
Zurück zum Zitat Genin, F., Menon, S.: Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 48, 526–539 (2010)CrossRef Genin, F., Menon, S.: Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 48, 526–539 (2010)CrossRef
25.
Zurück zum Zitat Edwards, J., Boles, J., Baurle, R.: Large-eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet. Combust. Flame 159, 1127–1138 (2012)CrossRef Edwards, J., Boles, J., Baurle, R.: Large-eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet. Combust. Flame 159, 1127–1138 (2012)CrossRef
26.
Zurück zum Zitat Potturi, A., Edwards, J.: Large-eddy Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion. Combust. Flame 162, 1176–1192 (2015)CrossRef Potturi, A., Edwards, J.: Large-eddy Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion. Combust. Flame 162, 1176–1192 (2015)CrossRef
27.
Zurück zum Zitat Fulton, J., Edwards, J., Hassan, H., McDaniel, J., Goyne, C., Rockwell, R., Cutler, A., Johansen, C., Danehy, P.: Large-eddy/Reynolds-averaged Navier-Stokes simulations of reactive flows in a dual-mode scramjet combustor. J. Prop. Power 30, 558–575 (2014)CrossRef Fulton, J., Edwards, J., Hassan, H., McDaniel, J., Goyne, C., Rockwell, R., Cutler, A., Johansen, C., Danehy, P.: Large-eddy/Reynolds-averaged Navier-Stokes simulations of reactive flows in a dual-mode scramjet combustor. J. Prop. Power 30, 558–575 (2014)CrossRef
28.
Zurück zum Zitat Fulton, J., Edwards, J., Cutler, A., McDaniel, J., Goyne, C.: Turbulence/chemistry interactions in a ramp-stabilized hydrogen-air diffusion flame. Combust. Flame 174, 152–165 (2016)CrossRef Fulton, J., Edwards, J., Cutler, A., McDaniel, J., Goyne, C.: Turbulence/chemistry interactions in a ramp-stabilized hydrogen-air diffusion flame. Combust. Flame 174, 152–165 (2016)CrossRef
29.
Zurück zum Zitat Patton, C., Wignall, T., Mirgolbabaei, H., Edwards, J.R., Echekki, T.: LES model assessment for high speed combustion using mesh sequenced realizations. AIAA Paper 2015-4207 (2015) Patton, C., Wignall, T., Mirgolbabaei, H., Edwards, J.R., Echekki, T.: LES model assessment for high speed combustion using mesh sequenced realizations. AIAA Paper 2015-4207 (2015)
30.
Zurück zum Zitat Patton, C.H., Wignall, T.J., Edwards, J.R., Echekki, T.: LES model assessment for high-speed combustion. AIAA Paper 2016-1937 (2016) Patton, C.H., Wignall, T.J., Edwards, J.R., Echekki, T.: LES model assessment for high-speed combustion. AIAA Paper 2016-1937 (2016)
32.
Zurück zum Zitat Gieseking, D., Choi, J., Edwards, J., Hassan, H.: Compressible flow simulations using a new large-eddy simulation/Reynolds-averaged Navier-Stokes model. AIAA J. 49, 2194–2209 (2011)CrossRef Gieseking, D., Choi, J., Edwards, J., Hassan, H.: Compressible flow simulations using a new large-eddy simulation/Reynolds-averaged Navier-Stokes model. AIAA J. 49, 2194–2209 (2011)CrossRef
33.
Zurück zum Zitat Lenormand, E., Sagaut, P., Ta Phuoc, L., Compte, P.: Subgrid-scale models for large-eddy simulations of compressible wall-bounded flows. AIAA J. 38, 1340–1350 (2000)CrossRef Lenormand, E., Sagaut, P., Ta Phuoc, L., Compte, P.: Subgrid-scale models for large-eddy simulations of compressible wall-bounded flows. AIAA J. 38, 1340–1350 (2000)CrossRef
34.
Zurück zum Zitat Menter, F.: Two equation eddy viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRef Menter, F.: Two equation eddy viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRef
35.
37.
Zurück zum Zitat Colella, P., Woodward, P.: Piecewise parabolic method for gas-dynamical simulations. J. Comput. Phys. 5, 174–201 (1984)CrossRefMATH Colella, P., Woodward, P.: Piecewise parabolic method for gas-dynamical simulations. J. Comput. Phys. 5, 174–201 (1984)CrossRefMATH
38.
Zurück zum Zitat Ducros, F., Ferrand, V., Nicaud, F., Weber, C., Darracq, D., Gachareiu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)CrossRefMATH Ducros, F., Ferrand, V., Nicaud, F., Weber, C., Darracq, D., Gachareiu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)CrossRefMATH
39.
Zurück zum Zitat Burke, M., Chaos, M., Ju, Y., Dryer, F., Klippenstein, S.: Comprehensive H2/O2 kinetic model for high-pressure combustion. In. J. Chem. Kinet. 44, 444–474 (2011)CrossRef Burke, M., Chaos, M., Ju, Y., Dryer, F., Klippenstein, S.: Comprehensive H2/O2 kinetic model for high-pressure combustion. In. J. Chem. Kinet. 44, 444–474 (2011)CrossRef
40.
Zurück zum Zitat DesJardin, P., Frankel, S.: Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids 10, 2298–2314 (1998)CrossRef DesJardin, P., Frankel, S.: Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids 10, 2298–2314 (1998)CrossRef
41.
Zurück zum Zitat Buxton, O., Ganapathisubramani, B.: PIV measurements of convection velocities in a turbulent mixing layer. J. Phys. Conf. Ser. 318, 052038 (2011)CrossRef Buxton, O., Ganapathisubramani, B.: PIV measurements of convection velocities in a turbulent mixing layer. J. Phys. Conf. Ser. 318, 052038 (2011)CrossRef
42.
Zurück zum Zitat Spina, E., Donovan, J., Smits, A.: On the structure of high Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293–327 (1991)CrossRef Spina, E., Donovan, J., Smits, A.: On the structure of high Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293–327 (1991)CrossRef
43.
Zurück zum Zitat Ringuette, M., Wu, M., Martin, M.: Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)CrossRefMATH Ringuette, M., Wu, M., Martin, M.: Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)CrossRefMATH
44.
Zurück zum Zitat Rockwell, R., Goyne, C., Rice, B., Tatman, B., Smith, C., Kouchi, T., McDaniel, J., Fulton, J., Edwards, J.: Collaborative experimental and computational study of a dual mode scramjet combustor. J. Prop. Power 30, 530–538 (2014)CrossRef Rockwell, R., Goyne, C., Rice, B., Tatman, B., Smith, C., Kouchi, T., McDaniel, J., Fulton, J., Edwards, J.: Collaborative experimental and computational study of a dual mode scramjet combustor. J. Prop. Power 30, 530–538 (2014)CrossRef
45.
Zurück zum Zitat Cutler, A., Magnotti, G., Cantu, L., Gallo, E., Rockwell, R., Goyne, C.: Dual-pump coherent anti-Stokes Raman apectroscopy measurements in a dual-mode scramjet. J. Prop. Power 30, 539–549 (2014)CrossRef Cutler, A., Magnotti, G., Cantu, L., Gallo, E., Rockwell, R., Goyne, C.: Dual-pump coherent anti-Stokes Raman apectroscopy measurements in a dual-mode scramjet. J. Prop. Power 30, 539–549 (2014)CrossRef
46.
Zurück zum Zitat Schultz, I., Goldstein, C., Jeffries, C., Hanson, R., Rockwell, R., Goyne, C.: Spatially resolved water measurements in a scramjet combustor using diode laser absorption. J. Prop. Power 30, 1551–1558 (2014)CrossRef Schultz, I., Goldstein, C., Jeffries, C., Hanson, R., Rockwell, R., Goyne, C.: Spatially resolved water measurements in a scramjet combustor using diode laser absorption. J. Prop. Power 30, 1551–1558 (2014)CrossRef
47.
Zurück zum Zitat Cutler, A., Magnotti, G., Cantu, L, Gallo, P., Danehy, P., Rockwell, R., Goyne, C., McDaniel, J.: Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet Configuration “C”. AIAA Paper 2013-0335 (2013) Cutler, A., Magnotti, G., Cantu, L, Gallo, P., Danehy, P., Rockwell, R., Goyne, C., McDaniel, J.: Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet Configuration “C”. AIAA Paper 2013-0335 (2013)
48.
Zurück zum Zitat Luo, Z., Yoo, C., Richardson, E., Chen, J., Law, C., Lu, T.: Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159, 265–274 (2012)CrossRef Luo, Z., Yoo, C., Richardson, E., Chen, J., Law, C., Lu, T.: Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159, 265–274 (2012)CrossRef
49.
Zurück zum Zitat Schultz, I., Goldstein, C., Jeffries, J., Spearrin, R., Hanson, R.: Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Prop. Power 30, 1595–1604 (2014)CrossRef Schultz, I., Goldstein, C., Jeffries, J., Spearrin, R., Hanson, R.: Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Prop. Power 30, 1595–1604 (2014)CrossRef
50.
Zurück zum Zitat Sjunnesson, A., Olovsson, S., Sjoblow, B.: Validation rig—a tool for flame studies. International Society for Air-breathing Engines Conference, ISABE-91-7038. Nottingham (1991) Sjunnesson, A., Olovsson, S., Sjoblow, B.: Validation rig—a tool for flame studies. International Society for Air-breathing Engines Conference, ISABE-91-7038. Nottingham (1991)
51.
Zurück zum Zitat Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. In: Fourth International Conference on Laser Anemometry - Advances and Applications. ASME, Cleveland (1991) Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. In: Fourth International Conference on Laser Anemometry - Advances and Applications. ASME, Cleveland (1991)
53.
Zurück zum Zitat Potturi, A., Patton, C., Edwards, J.: Application of data-driven SGS turbulent combustion models to the Volvo experiment. AIAA Paper 2017-1792 (2017) Potturi, A., Patton, C., Edwards, J.: Application of data-driven SGS turbulent combustion models to the Volvo experiment. AIAA Paper 2017-1792 (2017)
54.
Zurück zum Zitat Ghani, A., Poinsot, T., Gicquel, L., Staffelback, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef Ghani, A., Poinsot, T., Gicquel, L., Staffelback, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef
55.
Zurück zum Zitat Edwards, J.: Towards unified CFD simulations of real fluid flows. AIAA Paper 2001-2524 (2001) Edwards, J.: Towards unified CFD simulations of real fluid flows. AIAA Paper 2001-2524 (2001)
56.
Zurück zum Zitat Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995)CrossRefMATH Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995)CrossRefMATH
57.
Zurück zum Zitat Normal, M., Semazzi, F., Nair, R.: Conservative cascade interpolation on the sphere: an intercomparison of various non-oscillatory reconstructions. Q. J. R. Meteorol. Soc. 135, 795–805 (2009)CrossRef Normal, M., Semazzi, F., Nair, R.: Conservative cascade interpolation on the sphere: an intercomparison of various non-oscillatory reconstructions. Q. J. R. Meteorol. Soc. 135, 795–805 (2009)CrossRef
Metadaten
Titel
Least Squares Minimization Closure Models for LES of Turbulent Combustion
verfasst von
Conrad H. Patton
Jack R. Edwards
Publikationsdatum
07.08.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9968-5

Weitere Artikel der Ausgabe 3/2019

Flow, Turbulence and Combustion 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.