Skip to main content
Erschienen in: Measurement Techniques 3/2020

17.07.2020 | THERMAL MEASUREMENTS

Evaluation of the Density of Entropy Production in the Experiment with Impulsive Electric Heating

verfasst von: A. V. Kostanovskii, M. E. Kostanovskaya

Erschienen in: Measurement Techniques | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the linear mode of thermodynamics, which is now extensively investigated. One of the main concepts of the linear mode is the density of entropy production. We increase the class of problems for which it is necessary to compute the density of entropy production, i.e., to find this density according to the experimental thermograms (variations of temperature with time) of heating or cooling. The thermograms of heating or cooling are widely used in the nonstationary thermophysical experiments aimed at the investigation of the properties of substances and materials: the phase transformations of the first and second kind, heat capacity, and thermal diffusivity. We give quantitative substantiation of the formula for the density of entropy production. This formula is based on the data of thermograms obtained by the method of impulsive electric heating. The input time dependences of the electric power and brightness temperature of niobium specimens are simultaneously measured within a microsecond range. We reveal the agreement of the obtained two time dependences of the density of entropy production: one dependence takes into account the input of electric power, whereas the second dependence is based on the thermogram.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures, Wiley, New York (1999).MATH I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures, Wiley, New York (1999).MATH
3.
Zurück zum Zitat A. V. Kostanovskii and M. E. Kostanovskaya, “Thermodynamical application of the method of electrostatic levitation,” Izmer. Tekhn., No. 9, 34–37 (2012). A. V. Kostanovskii and M. E. Kostanovskaya, “Thermodynamical application of the method of electrostatic levitation,” Izmer. Tekhn., No. 9, 34–37 (2012).
4.
Zurück zum Zitat A. V. Lykov, Theory of Heat Conduction, Vysshaya Shkola, Moscow (1967). A. V. Lykov, Theory of Heat Conduction, Vysshaya Shkola, Moscow (1967).
6.
Zurück zum Zitat A. E. Sheindlin (ed.), Radiative Properties of Solid Materials. A Handbook, Energiya, Moscow (1974). A. E. Sheindlin (ed.), Radiative Properties of Solid Materials. A Handbook, Energiya, Moscow (1974).
7.
Zurück zum Zitat K. Thurnay, Thermal Properties of Transition Metals, Forschungszentrum Karlsruhe, Karlsruhe, (1998). K. Thurnay, Thermal Properties of Transition Metals, Forschungszentrum Karlsruhe, Karlsruhe, (1998).
10.
Zurück zum Zitat E. M. Savitskii (ed.), Refractory Metals, Alloys, and Compounds with Single-Crystal Structures, Nauka, Moscow (1984), pp. 156–160. E. M. Savitskii (ed.), Refractory Metals, Alloys, and Compounds with Single-Crystal Structures, Nauka, Moscow (1984), pp. 156–160.
11.
Zurück zum Zitat V. Ya. Chekhovskoi and V. E. Peletskii, “On the relaxation of point defects in metals,” Teplofiz. Vys. Temp., 49, No. 1, 45–55 (2011). V. Ya. Chekhovskoi and V. E. Peletskii, “On the relaxation of point defects in metals,” Teplofiz. Vys. Temp., 49, No. 1, 45–55 (2011).
12.
Zurück zum Zitat V. Ya. Chekhovskoi and V. E. Peletskii, “Problems of measurement of temperature of conductors heated by a pulse of the electric current,” Teplofiz. Vys. Temp., 47, No. 3, 371–378 (2009). V. Ya. Chekhovskoi and V. E. Peletskii, “Problems of measurement of temperature of conductors heated by a pulse of the electric current,” Teplofiz. Vys. Temp., 47, No. 3, 371–378 (2009).
14.
Zurück zum Zitat A. V. Kostanovskii, T. A. Compan, M. E. Kostanovskaya, et al., “Measurement of the temperature coefficient of linear expansion of single-crystal aluminum oxide,” Izmer. Tekhn., No. 2, 46–49 (2015). A. V. Kostanovskii, T. A. Compan, M. E. Kostanovskaya, et al., “Measurement of the temperature coefficient of linear expansion of single-crystal aluminum oxide,” Izmer. Tekhn., No. 2, 46–49 (2015).
Metadaten
Titel
Evaluation of the Density of Entropy Production in the Experiment with Impulsive Electric Heating
verfasst von
A. V. Kostanovskii
M. E. Kostanovskaya
Publikationsdatum
17.07.2020
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 3/2020
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01773-5

Weitere Artikel der Ausgabe 3/2020

Measurement Techniques 3/2020 Zur Ausgabe