Skip to main content
Erschienen in: Sustainable Water Resources Management 4/2021

01.08.2021 | Original Article

Evaluation of water treatment plant using Artificial Neural Network (ANN) case study of Pimpri Chinchwad Municipal Corporation (PCMC)

verfasst von: Dnyaneshwar Vasant Wadkar, Prakash Nangare, Manoj Pandurang Wagh

Erschienen in: Sustainable Water Resources Management | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Securing safe and sustainable supplies of drinking water is a major challenge for the government and scientific community, especially in times of climate change and dynamic urban and economic development. A typical water supply system comprises an intake, transmission, treatment, and distribution works. Satisfactory performance of water treatment plant (WTP) and availability of residual chlorine in the water distribution network (WDN) is necessary for the planning, management, and operation of the water supply system. Particularly in India, water shortages and poor water quality continue to be a major challenge in domestic and industrial sectors. The performance of the WTP depends on the raw water quality and unit processes involved in water treatment. The raw water quality fluctuates due to daily and seasonal changes in weather conditions, variations in water dam level, demands by consumers, heavy rainfall floods, industrial effluents, and agricultural activities. In the present paper, performance evaluation of WTP in farthest zones in WDN, namely Sant Tukaram Nagar at Nigdi WTP, Pimpri Chinchwad Municipal Corporation (PCMC), Maharashtra, India, is investigated. Artificial Neural Network (ANN) was implemented to predict the performance of WTP with correlation coefficient (R) 0.986. Feed Forward Neural Network (FFNN) Water Quality Model was developed using the Levenberg–Marquardt Training Algorithm and Bayesian Regularization Training Algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abba SI, Elkiran G (2017) Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Comput Sci 120:156–163CrossRef Abba SI, Elkiran G (2017) Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Comput Sci 120:156–163CrossRef
Zurück zum Zitat Amali S, Faddouli NE, Boutoulout A (2018) Machine learning and graph theory to optimize drinking water. Procedia Comput Sci 127:310–319CrossRef Amali S, Faddouli NE, Boutoulout A (2018) Machine learning and graph theory to optimize drinking water. Procedia Comput Sci 127:310–319CrossRef
Zurück zum Zitat Asnaashari A, McBean EA, Bahram GB, Tutt D (2014) Forecasting water main failure using artificial neural network modelling. Can Water Resour J 38(1):24–33CrossRef Asnaashari A, McBean EA, Bahram GB, Tutt D (2014) Forecasting water main failure using artificial neural network modelling. Can Water Resour J 38(1):24–33CrossRef
Zurück zum Zitat Ayvaz MT, Kentel E (2015) Identification of the best booster station network for a water distribution system. J Water Resour Plan Manag 141(5):1–10CrossRef Ayvaz MT, Kentel E (2015) Identification of the best booster station network for a water distribution system. J Water Resour Plan Manag 141(5):1–10CrossRef
Zurück zum Zitat Bekkari N, Zeddouri A (2019) Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Manag Environ Qual 30(3):593–608CrossRef Bekkari N, Zeddouri A (2019) Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Manag Environ Qual 30(3):593–608CrossRef
Zurück zum Zitat Bello O, Hamam Y, Djouani K (2014) Coagulation process control in water treatment plants using multiple model predictive control. Alex Eng J 53:420–435CrossRef Bello O, Hamam Y, Djouani K (2014) Coagulation process control in water treatment plants using multiple model predictive control. Alex Eng J 53:420–435CrossRef
Zurück zum Zitat Bobadilla MC, Lorza RL, Garcia RE, Gomez FS, Gozalez EV (2019) Coagulation: determination of key operating parameters by multi-response surface methodology using desirability functions. Water 11:1–21 Bobadilla MC, Lorza RL, Garcia RE, Gomez FS, Gozalez EV (2019) Coagulation: determination of key operating parameters by multi-response surface methodology using desirability functions. Water 11:1–21
Zurück zum Zitat Bowden GJ, Nixon JB, Dandy GC (2006) Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math Comput Model 44:469–484CrossRef Bowden GJ, Nixon JB, Dandy GC (2006) Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math Comput Model 44:469–484CrossRef
Zurück zum Zitat Chandwani V, Gupta NK, Nagar R, Agrawal V, Jethoo A (2016) Artificial neural networks aided conceptual stage design of water harvesting structures. Perspect Sci 6:51–155 Chandwani V, Gupta NK, Nagar R, Agrawal V, Jethoo A (2016) Artificial neural networks aided conceptual stage design of water harvesting structures. Perspect Sci 6:51–155
Zurück zum Zitat Cheshmidari MN, Ardakani AHH, Alipor H, Shojaei S (2017) Applying Delphi method in prioritizing intensity of flooding in Ivar watershed in Iran. Spat Inf Res 25(2):173–179CrossRef Cheshmidari MN, Ardakani AHH, Alipor H, Shojaei S (2017) Applying Delphi method in prioritizing intensity of flooding in Ivar watershed in Iran. Spat Inf Res 25(2):173–179CrossRef
Zurück zum Zitat Constans S, Bremond B, Morel P (2003) Simulation and control of chlorine levels in water distribution networks. J Water Resour Plan Manag 129:135–145CrossRef Constans S, Bremond B, Morel P (2003) Simulation and control of chlorine levels in water distribution networks. J Water Resour Plan Manag 129:135–145CrossRef
Zurück zum Zitat Cuesta CL, Tau MT (2014) Using artificial neural network models to assess water quality in water distribution networks. Procedia Eng 70:399–408CrossRef Cuesta CL, Tau MT (2014) Using artificial neural network models to assess water quality in water distribution networks. Procedia Eng 70:399–408CrossRef
Zurück zum Zitat Djeddou M, Aouatef H, Loukam M (2019) Wastewater treatment plant performances modelling using artificial neural networks. In: Ecotechnologies for wastewater treatment, pp 1–10. Djeddou M, Aouatef H, Loukam M (2019) Wastewater treatment plant performances modelling using artificial neural networks. In: Ecotechnologies for wastewater treatment, pp 1–10.
Zurück zum Zitat Erickson JJ, Charlotte ASD, Goodridge A, Kara LN (2017) Water quality effects of intermittent water supply in Arraiján, Panama. Water Res 114:338–350CrossRef Erickson JJ, Charlotte ASD, Goodridge A, Kara LN (2017) Water quality effects of intermittent water supply in Arraiján, Panama. Water Res 114:338–350CrossRef
Zurück zum Zitat Gibbs M, Morgan N, Maier H, Dandy G, Nixon J, Holmes M (2006) Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Math Comput Model 44:485–498CrossRef Gibbs M, Morgan N, Maier H, Dandy G, Nixon J, Holmes M (2006) Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Math Comput Model 44:485–498CrossRef
Zurück zum Zitat Guan-De W, Shang-Lien L (2008) Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network -based fuzzy inference system. Eng Appl Artif Intell 21:1189–1195CrossRef Guan-De W, Shang-Lien L (2008) Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network -based fuzzy inference system. Eng Appl Artif Intell 21:1189–1195CrossRef
Zurück zum Zitat Haghiri S, Sina MA, Daghighi A (2018) Optimum coagulant forecasting with modeling the jar test experiments using ANN. Drink Water Eng Sci 11:1–8CrossRef Haghiri S, Sina MA, Daghighi A (2018) Optimum coagulant forecasting with modeling the jar test experiments using ANN. Drink Water Eng Sci 11:1–8CrossRef
Zurück zum Zitat Hamed MM, Mona GK, Ezzat AH (2004) Prediction of wastewater treatment plant performance using artificial neural networks. Environ Model Softw 21:465–475 Hamed MM, Mona GK, Ezzat AH (2004) Prediction of wastewater treatment plant performance using artificial neural networks. Environ Model Softw 21:465–475
Zurück zum Zitat Hanbay D, Turkoglu I, Demir Y (2008) Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Syst Appl 34:1038–1043CrossRef Hanbay D, Turkoglu I, Demir Y (2008) Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Syst Appl 34:1038–1043CrossRef
Zurück zum Zitat Hebati M, Stedmon C, Murphy K (2017) Assessment of drinking water quality at the tap using fluorescence spectroscopy. Water Res 125:1–10CrossRef Hebati M, Stedmon C, Murphy K (2017) Assessment of drinking water quality at the tap using fluorescence spectroscopy. Water Res 125:1–10CrossRef
Zurück zum Zitat Heddam S, Abdelmalek B, Dechemi N (2011) Applications of radial- basis function and generalized regression neural networks for modeling of coagulant dosage in a drinking water-treatment plant comparative study. J Environ Eng 137:1209–1214CrossRef Heddam S, Abdelmalek B, Dechemi N (2011) Applications of radial- basis function and generalized regression neural networks for modeling of coagulant dosage in a drinking water-treatment plant comparative study. J Environ Eng 137:1209–1214CrossRef
Zurück zum Zitat Jayaweera CD, Aziz N (2018) Development and comparison of extreme learning machine and multi-layer perceptron neural network models for predicting optimum coagulant dosage for water treatment. J Phys: Conf Ser 11:1–8 Jayaweera CD, Aziz N (2018) Development and comparison of extreme learning machine and multi-layer perceptron neural network models for predicting optimum coagulant dosage for water treatment. J Phys: Conf Ser 11:1–8
Zurück zum Zitat Kennedy MJ, Gandomia AH, Miller CM (2015) Coagulation modelling using ANN to predict both turbidity and DOM-PARAFAC component removal. J Environ Chem Eng 3(4):2829–2838CrossRef Kennedy MJ, Gandomia AH, Miller CM (2015) Coagulation modelling using ANN to predict both turbidity and DOM-PARAFAC component removal. J Environ Chem Eng 3(4):2829–2838CrossRef
Zurück zum Zitat Kim H, Kim S, Kim J (2014) Prediction of chlorine concentration in various hydraulic conditions for a Pilot Scale Water Distribution System. Procedia Eng 70:934–942 Kim H, Kim S, Kim J (2014) Prediction of chlorine concentration in various hydraulic conditions for a Pilot Scale Water Distribution System. Procedia Eng 70:934–942
Zurück zum Zitat Koleva MN (2017) Optimization approaches for the synthesis of water treatment plants. Comput Chem Eng 106:849–871CrossRef Koleva MN (2017) Optimization approaches for the synthesis of water treatment plants. Comput Chem Eng 106:849–871CrossRef
Zurück zum Zitat Krishnaiah D, Siva K, Isidore KM, Sarbatly R (2004) Prediction of clarified water turbidity of moyog water treatment plant using artificial neural network. J Appl Sci 7(15):2006–2010CrossRef Krishnaiah D, Siva K, Isidore KM, Sarbatly R (2004) Prediction of clarified water turbidity of moyog water treatment plant using artificial neural network. J Appl Sci 7(15):2006–2010CrossRef
Zurück zum Zitat Kumpel E, Kara LN (2013) Comparing microbial water quality in an intermittent and continuous piped water supply. Water Res 47(14):5176–5188CrossRef Kumpel E, Kara LN (2013) Comparing microbial water quality in an intermittent and continuous piped water supply. Water Res 47(14):5176–5188CrossRef
Zurück zum Zitat Lee L, Lu C, Kung S (2004) Spatial diversity of chlorine residual in a drinking water distribution system. J Environ Eng 130:1263–1268CrossRef Lee L, Lu C, Kung S (2004) Spatial diversity of chlorine residual in a drinking water distribution system. J Environ Eng 130:1263–1268CrossRef
Zurück zum Zitat Librantz AF, Santos FC, Dias CG (2018) Artificial neural networks to control chlorine dosing in a water treatment plant. Acta Sci Technol 40:1–9CrossRef Librantz AF, Santos FC, Dias CG (2018) Artificial neural networks to control chlorine dosing in a water treatment plant. Acta Sci Technol 40:1–9CrossRef
Zurück zum Zitat McCoy ST, Jeanne M, Briesen V (2012) Temporal variability of bacterial diversity in a chlorinated drinking water distribution system. J Environ Eng 138:786–795CrossRef McCoy ST, Jeanne M, Briesen V (2012) Temporal variability of bacterial diversity in a chlorinated drinking water distribution system. J Environ Eng 138:786–795CrossRef
Zurück zum Zitat Medina MM, Ribeiro LF (2017) Sampling design for leak detection in water distribution networks. Procedia Eng 186:460–469CrossRef Medina MM, Ribeiro LF (2017) Sampling design for leak detection in water distribution networks. Procedia Eng 186:460–469CrossRef
Zurück zum Zitat Nasr MS, Moustafa MA, Seif HA, El Kobrosy G (2012) Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex Eng J 51(1):37–43CrossRef Nasr MS, Moustafa MA, Seif HA, El Kobrosy G (2012) Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex Eng J 51(1):37–43CrossRef
Zurück zum Zitat Pitta KS, Babu JR (2010) Performance evaluation of waste water treatment plant. Int J Eng Sci Technol 2(12):7785–7796 Pitta KS, Babu JR (2010) Performance evaluation of waste water treatment plant. Int J Eng Sci Technol 2(12):7785–7796
Zurück zum Zitat Raduly B, Gernaey K (2007) Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environ Model Softw 22:1208–1216CrossRef Raduly B, Gernaey K (2007) Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environ Model Softw 22:1208–1216CrossRef
Zurück zum Zitat Rastegaripour F, Saboni MS, Shojaei S, Tavassoli A (2019) Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms. Int J Environ Sci Technol 16(10):5835–5856CrossRef Rastegaripour F, Saboni MS, Shojaei S, Tavassoli A (2019) Simultaneous management of water and wastewater using ant and artificial neural network (ANN) algorithms. Int J Environ Sci Technol 16(10):5835–5856CrossRef
Zurück zum Zitat Reilly GO, Bezuidenhout CC, Bezuidenhout JJ (2018) Artificial neural networks: applications in the drinking water sector. Water Supply 18(6):1869–1887CrossRef Reilly GO, Bezuidenhout CC, Bezuidenhout JJ (2018) Artificial neural networks: applications in the drinking water sector. Water Supply 18(6):1869–1887CrossRef
Zurück zum Zitat Saha AK, Choudhury S, Majumder M (2017) Performance efficiency analysis of water treatment plants by using MCDM and neural network model. Int J Sci Technol 3(1):27–35 Saha AK, Choudhury S, Majumder M (2017) Performance efficiency analysis of water treatment plants by using MCDM and neural network model. Int J Sci Technol 3(1):27–35
Zurück zum Zitat Shojaei S, Shojaei S (2017) Experimental design and modeling of removal of acid green 25 dye by nanoscale zero-valent iron. Euro-Mediterr J Environ Integr 2(1):15CrossRef Shojaei S, Shojaei S (2017) Experimental design and modeling of removal of acid green 25 dye by nanoscale zero-valent iron. Euro-Mediterr J Environ Integr 2(1):15CrossRef
Zurück zum Zitat Swetland KA, Weber-Shirk ML, Lion LW (2013) Gravity-powered chemical dose controller for sustainable, municipal-scale drinking water treatment. J Environ Eng 139:1023–1034CrossRef Swetland KA, Weber-Shirk ML, Lion LW (2013) Gravity-powered chemical dose controller for sustainable, municipal-scale drinking water treatment. J Environ Eng 139:1023–1034CrossRef
Zurück zum Zitat Wang X, Ratnaweera H, Holam J, Olsbu V (2017) Statistical monitoring and dynamic simulation of a wastewater treatment plant: a combined approach to achieve model predictive control. J Environ Manag 193:1–7CrossRef Wang X, Ratnaweera H, Holam J, Olsbu V (2017) Statistical monitoring and dynamic simulation of a wastewater treatment plant: a combined approach to achieve model predictive control. J Environ Manag 193:1–7CrossRef
Zurück zum Zitat Zhang JM, Lee H (2011) Modelling and simulations of flow pattern, chlorine concentration, and mean age distributions in potable water service reservoir of Singapore. J Environ Eng 137:575–584CrossRef Zhang JM, Lee H (2011) Modelling and simulations of flow pattern, chlorine concentration, and mean age distributions in potable water service reservoir of Singapore. J Environ Eng 137:575–584CrossRef
Metadaten
Titel
Evaluation of water treatment plant using Artificial Neural Network (ANN) case study of Pimpri Chinchwad Municipal Corporation (PCMC)
verfasst von
Dnyaneshwar Vasant Wadkar
Prakash Nangare
Manoj Pandurang Wagh
Publikationsdatum
01.08.2021
Verlag
Springer International Publishing
Erschienen in
Sustainable Water Resources Management / Ausgabe 4/2021
Print ISSN: 2363-5037
Elektronische ISSN: 2363-5045
DOI
https://doi.org/10.1007/s40899-021-00532-w

Weitere Artikel der Ausgabe 4/2021

Sustainable Water Resources Management 4/2021 Zur Ausgabe