Skip to main content
Erschienen in: Flow, Turbulence and Combustion 4/2016

11.08.2016

Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame

verfasst von: K. Hiraoka, Y. Naka, M. Shimura, Y. Minamoto, N. Fukushima, M. Tanahashi, T. Miyauchi

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. AIAA J. 80(1357) (1980) Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. AIAA J. 80(1357) (1980)
2.
Zurück zum Zitat Baum, M., Poinsot, T., Thevenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 106, 247–261 (1994)MATH Baum, M., Poinsot, T., Thevenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 106, 247–261 (1994)MATH
3.
Zurück zum Zitat Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27(1), 917–925 (1998)CrossRef Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27(1), 917–925 (1998)CrossRef
4.
Zurück zum Zitat Brown, P., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Statist. Compt. 10, 1038–1051 (1989)MathSciNetCrossRefMATH Brown, P., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Statist. Compt. 10, 1038–1051 (1989)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20(085), 108 (2008)MATH Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20(085), 108 (2008)MATH
6.
Zurück zum Zitat Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRef
7.
Zurück zum Zitat Chatakonda, O., Hawkes, E.R., Brear, M.J., Chen, J.H., Knudsen, E., Pitsch, H.: Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation. Proc. CTR Summer Program., 271–280 (2010) Chatakonda, O., Hawkes, E.R., Brear, M.J., Chen, J.H., Knudsen, E., Pitsch, H.: Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation. Proc. CTR Summer Program., 271–280 (2010)
8.
Zurück zum Zitat Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979)CrossRefMATH Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979)CrossRefMATH
9.
Zurück zum Zitat Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefMATH Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefMATH
10.
Zurück zum Zitat Damköhler, G.: Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. 46(11), 601–626 (1940) Damköhler, G.: Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. 46(11), 601–626 (1940)
11.
Zurück zum Zitat Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)CrossRef Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)CrossRef
12.
Zurück zum Zitat Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. Proc. CTR Summer Program., 169–179 (2000) Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. Proc. CTR Summer Program., 169–179 (2000)
13.
Zurück zum Zitat Fukushima, N., Naka, Y., Hiraoka, K., Shimura, M., Tanahashi, M., Miyauchi, T.: A scale self-recognition mixed SGS model based on the universal representation of Kolmogorov length by GS variables. In: Proc 9th Turbulence and Shear Flow Phenomena (2015) Fukushima, N., Naka, Y., Hiraoka, K., Shimura, M., Tanahashi, M., Miyauchi, T.: A scale self-recognition mixed SGS model based on the universal representation of Kolmogorov length by GS variables. In: Proc 9th Turbulence and Shear Flow Phenomena (2015)
14.
Zurück zum Zitat Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRef Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRef
15.
Zurück zum Zitat Gao, Y., Chakraborty, N., Klein, M.: Assessment of the performances of sub-grid scalar flux models for premixed flames with different global lewis numbers: A direct numerical simulation analysis. Int. J. Heat Fluid Flow 52, 28–39 (2015)CrossRef Gao, Y., Chakraborty, N., Klein, M.: Assessment of the performances of sub-grid scalar flux models for premixed flames with different global lewis numbers: A direct numerical simulation analysis. Int. J. Heat Fluid Flow 52, 28–39 (2015)CrossRef
16.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)CrossRefMATH Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)CrossRefMATH
17.
Zurück zum Zitat Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)CrossRef Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)CrossRef
18.
Zurück zum Zitat Gutheil, E., Balakrishnan, G., Williams, F.A.: Structure and extinction of hydrogen–air diffusion flames. In: Peters, N., Rogg, B. (eds.) Lecture Notes in Physics: Reduced kinetic mechanisms for applications in combustion systems., pp. 177–195. Springer Verlag, New York (1993) Gutheil, E., Balakrishnan, G., Williams, F.A.: Structure and extinction of hydrogen–air diffusion flames. In: Peters, N., Rogg, B. (eds.) Lecture Notes in Physics: Reduced kinetic mechanisms for applications in combustion systems., pp. 177–195. Springer Verlag, New York (1993)
19.
Zurück zum Zitat Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)CrossRef Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)CrossRef
20.
Zurück zum Zitat Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames. Comb. Sci. Technol. Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames. Comb. Sci. Technol.
21.
Zurück zum Zitat Huai, Y., Sadiki, A., Pfadler, S., Löffler, M., Beyrau, F., Leipertz, A., Dinkelacker, F.: Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows. Proc. 5th Turbulence. Heat Mass Transf., 263–266 (2006) Huai, Y., Sadiki, A., Pfadler, S., Löffler, M., Beyrau, F., Leipertz, A., Dinkelacker, F.: Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows. Proc. 5th Turbulence. Heat Mass Transf., 263–266 (2006)
22.
23.
Zurück zum Zitat Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37(7), 2728–2731 (1988)CrossRef Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37(7), 2728–2731 (1988)CrossRef
24.
Zurück zum Zitat Kim, J., Pope, S.B.: Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model 18(3), 388–413 (2014)MathSciNetCrossRef Kim, J., Pope, S.B.: Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model 18(3), 388–413 (2014)MathSciNetCrossRef
25.
Zurück zum Zitat Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16 (11), 91–94 (2004)CrossRefMATH Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16 (11), 91–94 (2004)CrossRefMATH
26.
Zurück zum Zitat Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17(045), 104 (2005)MATH Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17(045), 104 (2005)MATH
27.
28.
Zurück zum Zitat Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)CrossRef Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)CrossRef
29.
30.
31.
Zurück zum Zitat Miyauchi, T., Tanahashi, M., Gao, F.: Fractal characteristics of turbulent diffusion flames. Comb. Sci. Technol. 96, 135–154 (1994)CrossRef Miyauchi, T., Tanahashi, M., Gao, F.: Fractal characteristics of turbulent diffusion flames. Comb. Sci. Technol. 96, 135–154 (1994)CrossRef
32.
Zurück zum Zitat Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combust. 62, 183–200 (1999)CrossRefMATH Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combust. 62, 183–200 (1999)CrossRefMATH
33.
Zurück zum Zitat Peters, N.: Turbulent Combustion. Cambridge Press (2000) Peters, N.: Turbulent Combustion. Cambridge Press (2000)
34.
Zurück zum Zitat Pfadler, S., Kerl, J., Beyrau, F., Leipertz, A., Sadiki, A., Scheuerlein, J., Dinkelacker, F.: Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc. Combust. Inst. 32, 1723–1730 (2009)CrossRef Pfadler, S., Kerl, J., Beyrau, F., Leipertz, A., Sadiki, A., Scheuerlein, J., Dinkelacker, F.: Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc. Combust. Inst. 32, 1723–1730 (2009)CrossRef
35.
Zurück zum Zitat Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRef Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRef
37.
Zurück zum Zitat Pitsch, H., Duchamp De Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2009–2015 (2002)CrossRef Pitsch, H., Duchamp De Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2009–2015 (2002)CrossRef
38.
Zurück zum Zitat Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)CrossRef Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)CrossRef
40.
Zurück zum Zitat Shim, Y., Tanaka, S., Tanahashi, M., Miyauchi, T.: Local structure and fractal characteristics of H 2-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)CrossRef Shim, Y., Tanaka, S., Tanahashi, M., Miyauchi, T.: Local structure and fractal characteristics of H 2-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)CrossRef
41.
Zurück zum Zitat Shimura, M., Yamawaki, K., Fukushima, N., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: Flame and eddy structures in hydrogen-air turbulent jet premixed flame. J. Turbulence 13(42), 1–17 (2012)MathSciNetMATH Shimura, M., Yamawaki, K., Fukushima, N., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: Flame and eddy structures in hydrogen-air turbulent jet premixed flame. J. Turbulence 13(42), 1–17 (2012)MathSciNetMATH
42.
Zurück zum Zitat Tanahashi, M., Iwase, S., Miyauchi, T.: Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbulence 2(6), 1–18 (2001)MathSciNetMATH Tanahashi, M., Iwase, S., Miyauchi, T.: Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbulence 2(6), 1–18 (2001)MathSciNetMATH
43.
Zurück zum Zitat Thornber, B., Bilger, R.W., Masri, A.R., Hawkes, E.R.: An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230, 7687–7705 (2011)MathSciNetCrossRefMATH Thornber, B., Bilger, R.W., Masri, A.R., Hawkes, E.R.: An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230, 7687–7705 (2011)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2104 (2002)CrossRefMATH Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2104 (2002)CrossRefMATH
45.
Zurück zum Zitat Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)MATH Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)MATH
46.
Zurück zum Zitat Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)CrossRef Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)CrossRef
47.
Zurück zum Zitat Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27, 899–907 (1998)CrossRef Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27, 899–907 (1998)CrossRef
48.
Zurück zum Zitat Yoshikawa, I., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames. Proc. Combust. Inst. 34, 1373–1381 (2013)CrossRef Yoshikawa, I., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames. Proc. Combust. Inst. 34, 1373–1381 (2013)CrossRef
Metadaten
Titel
Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame
verfasst von
K. Hiraoka
Y. Naka
M. Shimura
Y. Minamoto
N. Fukushima
M. Tanahashi
T. Miyauchi
Publikationsdatum
11.08.2016
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 4/2016
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9756-z

Weitere Artikel der Ausgabe 4/2016

Flow, Turbulence and Combustion 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.