Skip to main content
Erschienen in: Telecommunication Systems 4/2017

14.07.2016

Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells

verfasst von: Mohammed H. Alsharif, Rosdiadee Nordin

Erschienen in: Telecommunication Systems | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The exponential increase in mobile data traffic is considered to be a critical driver towards the new era, or 5G, of mobile wireless networks. 5G will require a paradigm shift that includes very high carrier frequency spectra with massive bandwidths, extreme base station densities, and unprecedented numbers of antennas to support the enormous increase in the volume of traffic. This paper discusses several design choices, features, and technical challenges that illustrate potential research topics and challenges for the future generation of mobile networks. This article does not provide a final solution but highlights the most promising lines of research from the recent literature in common directions for the 5G project. The potential physical layer technologies that are considered for future wireless communications include spatial multiplexing using massive multi-user multiple-input multiple-output (MIMO) techniques with millimetre-waves (mm-waves) in small cell geometries. These technologies are discussed in detail along with the areas for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu, J., Zhang, Y., Zukerman, M., & Yung, E. (2015). Energy-efficient base stations sleep mode techniques in green cellular networks: A survey. IEEE Communications Surveys & Tutorials, 17(2), 803–826.CrossRef Wu, J., Zhang, Y., Zukerman, M., & Yung, E. (2015). Energy-efficient base stations sleep mode techniques in green cellular networks: A survey. IEEE Communications Surveys & Tutorials, 17(2), 803–826.CrossRef
3.
Zurück zum Zitat Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRef Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRef
4.
Zurück zum Zitat Wang, R., Hu, H., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access, 2, 1187–1195.CrossRef Wang, R., Hu, H., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access, 2, 1187–1195.CrossRef
6.
Zurück zum Zitat Onoe, S. (2016). Evolution of 5G mobile technology toward 2020 and beyond. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 23–28). Onoe, S. (2016). Evolution of 5G mobile technology toward 2020 and beyond. In 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 23–28).
7.
Zurück zum Zitat Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 99, 2016. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 99, 2016.
8.
Zurück zum Zitat Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef
9.
Zurück zum Zitat Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access, 4, 1355–1374.CrossRef Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access, 4, 1355–1374.CrossRef
10.
Zurück zum Zitat Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef
11.
Zurück zum Zitat Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244.CrossRef Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244.CrossRef
12.
Zurück zum Zitat Hoydis, J., & Debbah, M. (2010). Green, cost-effective, flexible, small cell networks. IEEE Communications Society MMTC, 5, 23–26. Hoydis, J., & Debbah, M. (2010). Green, cost-effective, flexible, small cell networks. IEEE Communications Society MMTC, 5, 23–26.
13.
Zurück zum Zitat Hoydis, J., Kobayashi, M., & Debbah, M. (2011). A cost-and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 26, 37–43.CrossRef Hoydis, J., Kobayashi, M., & Debbah, M. (2011). A cost-and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 26, 37–43.CrossRef
14.
Zurück zum Zitat Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In \(75^{th}\) IEEE Vehicular Technology Conference (VTC Spring) (pp. 1–5). Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced. In \(75^{th}\) IEEE Vehicular Technology Conference (VTC Spring) (pp. 1–5).
15.
Zurück zum Zitat Lindbom, L., Love, R., Krishnamurthy, S., Yao, C., Miki, N., & Chandrasekhar, V. (2011). Enhanced inter-cell interference coordination for heterogeneous networks in LTE-advanced: A survey. CoRR abs/1112.1344, 2011. arXiv:1112.1344 Lindbom, L., Love, R., Krishnamurthy, S., Yao, C., Miki, N., & Chandrasekhar, V. (2011). Enhanced inter-cell interference coordination for heterogeneous networks in LTE-advanced: A survey. CoRR abs/1112.1344, 2011. arXiv:​1112.​1344
16.
Zurück zum Zitat Lee, H., Vahid, S., & Moessner, K. (2014). A survey of radio resource management for spectrum aggregation in LTE-advanced. IEEE Communications Surveys & Tutorials, 16(2), 745–760.CrossRef Lee, H., Vahid, S., & Moessner, K. (2014). A survey of radio resource management for spectrum aggregation in LTE-advanced. IEEE Communications Surveys & Tutorials, 16(2), 745–760.CrossRef
17.
Zurück zum Zitat Andrews, J. G., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Selected Areas in Communications, 32(6), 1065–1082.CrossRef
18.
Zurück zum Zitat Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
19.
Zurück zum Zitat Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless hetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.CrossRef Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless hetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75.CrossRef
20.
Zurück zum Zitat Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
21.
Zurück zum Zitat Razavizadeh, S., Ahn, M., & Lee, I. (2014). Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Processing Magazine, 31(6), 94–101.CrossRef Razavizadeh, S., Ahn, M., & Lee, I. (2014). Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Processing Magazine, 31(6), 94–101.CrossRef
22.
Zurück zum Zitat Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
23.
Zurück zum Zitat Chou, S.-F., Chiu, T.-C., Yu, Y.-J., & Pang, A.-C. (2014). Mobile small cell deployment for next generation cellular networks. In 2014 IEEE Global Communications Conference (GLOBECOM) (pp. 4852–4857). Chou, S.-F., Chiu, T.-C., Yu, Y.-J., & Pang, A.-C. (2014). Mobile small cell deployment for next generation cellular networks. In 2014 IEEE Global Communications Conference (GLOBECOM) (pp. 4852–4857).
24.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.CrossRef Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.CrossRef
25.
Zurück zum Zitat Gotsis, A., Stefanatos, S., & Alexiou, A. (2016). UltraDense networks: The new wireless frontier for enabling 5G access. IEEE Vehicular Technology Magazine, 11, 71–78.CrossRef Gotsis, A., Stefanatos, S., & Alexiou, A. (2016). UltraDense networks: The new wireless frontier for enabling 5G access. IEEE Vehicular Technology Magazine, 11, 71–78.CrossRef
27.
Zurück zum Zitat Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.CrossRef Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.CrossRef
28.
Zurück zum Zitat Medbo, J., Kyosti, P., Kusume, K., Raschkowski, L., Haneda, K., Jamsa, T., et al. (2016). Radio propagation modeling for 5G mobile and wireless communications. IEEE Communications Magazine, 54, 144–151.CrossRef Medbo, J., Kyosti, P., Kusume, K., Raschkowski, L., Haneda, K., Jamsa, T., et al. (2016). Radio propagation modeling for 5G mobile and wireless communications. IEEE Communications Magazine, 54, 144–151.CrossRef
29.
Zurück zum Zitat Dehos, C., Domenico, A., & Dussopt, L. (2014). Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 52(9), 88–95.CrossRef Dehos, C., Domenico, A., & Dussopt, L. (2014). Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 52(9), 88–95.CrossRef
30.
Zurück zum Zitat Weiler, R. J., Peter, M., Keusgen, W., Calvanese-Strinati, E., De Domenico, A., Filippini, I., Capone, A., Siaud, I., Ulmer-Moll, A.-M., & Maltsev, A. (2014). Enabling 5G backhaul and access with millimeter-waves. In European Conference on Networks and Communications(EuCNC) Weiler, R. J., Peter, M., Keusgen, W., Calvanese-Strinati, E., De Domenico, A., Filippini, I., Capone, A., Siaud, I., Ulmer-Moll, A.-M., & Maltsev, A. (2014). Enabling 5G backhaul and access with millimeter-waves. In European Conference on Networks and Communications(EuCNC)
31.
Zurück zum Zitat Monserrat, J. F., Mange, G., Braun, V., Tullberg, H., Zimmermann, G., & Bulakci, Ö. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking, 2015, 1–16.CrossRef Monserrat, J. F., Mange, G., Braun, V., Tullberg, H., Zimmermann, G., & Bulakci, Ö. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking, 2015, 1–16.CrossRef
33.
Zurück zum Zitat Sun, S., Rappaport, T. S., Rangan, S., Thomas, T. A., Ghosh, A., Kovacs, I. Z., Rodriguez, I., Koymen, O., Partyka, A., & Jarvelainen, J. (2016). Propagation path loss models for 5G urban microand macro-cellular scenarios. In 83rd IEEE ehicular Technology Conference (VTC2016-S pring) Sun, S., Rappaport, T. S., Rangan, S., Thomas, T. A., Ghosh, A., Kovacs, I. Z., Rodriguez, I., Koymen, O., Partyka, A., & Jarvelainen, J. (2016). Propagation path loss models for 5G urban microand macro-cellular scenarios. In 83rd IEEE ehicular Technology Conference (VTC2016-S pring)
34.
Zurück zum Zitat Inomata, M., Yamada, W., Sasaki, M., Mizoguchi, M., Kitao, K., & Imai, T. (2015). Path loss model for the 2 to 37 GHz band in street microcell environments. IEICE Communications Express, 4(5), 149–154.CrossRef Inomata, M., Yamada, W., Sasaki, M., Mizoguchi, M., Kitao, K., & Imai, T. (2015). Path loss model for the 2 to 37 GHz band in street microcell environments. IEICE Communications Express, 4(5), 149–154.CrossRef
35.
Zurück zum Zitat Sulyman, A. I., Nassar, A., Samimi, M. K., Maccartney, G., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.CrossRef Sulyman, A. I., Nassar, A., Samimi, M. K., Maccartney, G., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.CrossRef
36.
Zurück zum Zitat Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRef
37.
Zurück zum Zitat Johansson, K., Furuskar, A., Karlsson, P., & Zander, J. (2004). Relation between base station characteristics and cost structure in cellular systems. In \(15^{th}\) IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 2627–2631). Johansson, K., Furuskar, A., Karlsson, P., & Zander, J. (2004). Relation between base station characteristics and cost structure in cellular systems. In \(15^{th}\) IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 2627–2631).
38.
Zurück zum Zitat Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef
39.
Zurück zum Zitat Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.CrossRef Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.CrossRef
40.
Zurück zum Zitat Lozano, A., & Tulino, A. M. (2002). Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory, 48(12), 3117–3128.CrossRef Lozano, A., & Tulino, A. M. (2002). Capacity of multiple-transmit multiple-receive antenna architectures. IEEE Transactions on Information Theory, 48(12), 3117–3128.CrossRef
41.
Zurück zum Zitat Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive MIMO in 5G. In 2014 Globecom Workshops (GC Wkshps) (pp. 346–351). Panzner, B., Zirwas, W., Dierks, S., Lauridsen, M., Mogensen, P., Pajukoski, K., & Miao, D. (2014). Deployment and implementation strategies for massive MIMO in 5G. In 2014 Globecom Workshops (GC Wkshps) (pp. 346–351).
42.
Zurück zum Zitat Marzetta, T. L. (2007). ”The case for MANY (greater than 16) antennas as the base station”, in Proc. San Diego, CA, USA: ITA. Marzetta, T. L. (2007). ”The case for MANY (greater than 16) antennas as the base station”, in Proc. San Diego, CA, USA: ITA.
43.
Zurück zum Zitat Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
44.
Zurück zum Zitat Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRef Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRef
45.
Zurück zum Zitat Alsharif, M. H., Nordin, R., & Ismail, M. (2014). Classification, recent advances and research challenges in energy efficient cellular networks. Wireless Personal Communications, 77(2), 1249–1269.CrossRef Alsharif, M. H., Nordin, R., & Ismail, M. (2014). Classification, recent advances and research challenges in energy efficient cellular networks. Wireless Personal Communications, 77(2), 1249–1269.CrossRef
46.
Zurück zum Zitat Alsharif, M. H., Nordin, R., & Ismail, M. (2013). Survey of Green Radio Communications Networks: Techniques and Recent Advances. Journal of Computer Networks and Communications, 2013, doi:10.1155/2013/453893. Alsharif, M. H., Nordin, R., & Ismail, M. (2013). Survey of Green Radio Communications Networks: Techniques and Recent Advances. Journal of Computer Networks and Communications, 2013, doi:10.​1155/​2013/​453893.
47.
Zurück zum Zitat Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H. M., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRef Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H. M., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRef
48.
Zurück zum Zitat Liu, W., Han, S., & Yang, C. (2014). Energy efficiency comparison of massive MIMO and small cell network. In 2014 IEEE Global Conference on in Signal and Information Processing (GlobalSIP) (pp. 617–621). Liu, W., Han, S., & Yang, C. (2014). Energy efficiency comparison of massive MIMO and small cell network. In 2014 IEEE Global Conference on in Signal and Information Processing (GlobalSIP) (pp. 617–621).
49.
Zurück zum Zitat Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, doi:10.1109/TWC.2015.2414413. Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, doi:10.​1109/​TWC.​2015.​2414413.
50.
Zurück zum Zitat Dahman, G., Rusek, F., Zhu, M., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Wireless Communications, 14(7), 3899–3911.CrossRef Dahman, G., Rusek, F., Zhu, M., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Wireless Communications, 14(7), 3899–3911.CrossRef
51.
Zurück zum Zitat Vieira, J., Malkowsky, S., Nieman, K., Miers, Z., Kundargi, N., Liu, L., Wong, I., Owall, V., Edfors, O., & Tufvesson, F. (2014). A flexible 100-antenna testbed for massive MIMO. In IEEE GLOBECOM 2014 Workshop on Massive MIMO: From theory to practice (pp. 12–08). Vieira, J., Malkowsky, S., Nieman, K., Miers, Z., Kundargi, N., Liu, L., Wong, I., Owall, V., Edfors, O., & Tufvesson, F. (2014). A flexible 100-antenna testbed for massive MIMO. In IEEE GLOBECOM 2014 Workshop on Massive MIMO: From theory to practice (pp. 12–08).
52.
Zurück zum Zitat Truong, K. T., & Heath, R. W. (2013). Effects of channel aging in massive MIMO systems. IEEE/KICS Journal of Communications and Networks, 15, 338–351.CrossRef Truong, K. T., & Heath, R. W. (2013). Effects of channel aging in massive MIMO systems. IEEE/KICS Journal of Communications and Networks, 15, 338–351.CrossRef
53.
Zurück zum Zitat Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef
54.
Zurück zum Zitat Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. In IEEE International Symposium on Information Theory (ISIT) (pp. 2184–2188). Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. In IEEE International Symposium on Information Theory (ISIT) (pp. 2184–2188).
55.
Zurück zum Zitat Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys & Tutorials, 18, 905–923.CrossRef Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys & Tutorials, 18, 905–923.CrossRef
56.
Zurück zum Zitat Jung, M., Kim, Y., Lee, J., & Choi, S. (2013). Optimal number of users in zero-forcing based multiuser MIMO systems with large number of antennas. IEEE Journal of Communications and Networks, 15(4), 362–369.CrossRef Jung, M., Kim, Y., Lee, J., & Choi, S. (2013). Optimal number of users in zero-forcing based multiuser MIMO systems with large number of antennas. IEEE Journal of Communications and Networks, 15(4), 362–369.CrossRef
57.
Zurück zum Zitat Zhang, H., Zheng, X., Xu, W., & You, X. (2014). On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation. EURASIP Journal on Wireless Communications and Networking, 2014, 220.CrossRef Zhang, H., Zheng, X., Xu, W., & You, X. (2014). On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation. EURASIP Journal on Wireless Communications and Networking, 2014, 220.CrossRef
58.
Zurück zum Zitat Alnajjar, K. A., Smith, P. J., & Woodward, G. K. (2015). Co-located and distributed antenna systems: deployment options for massive multipleinput-multiple-output. IET Microwaves, Antennas & Propagation, 9(13), 1418–1424.CrossRef Alnajjar, K. A., Smith, P. J., & Woodward, G. K. (2015). Co-located and distributed antenna systems: deployment options for massive multipleinput-multiple-output. IET Microwaves, Antennas & Propagation, 9(13), 1418–1424.CrossRef
59.
Zurück zum Zitat Liu, A., & Lau, V. K. N. (2012). Joint power and antenna selection optimization for energy-efficient large distributed MIMO networks. In Proceedings of the IEEE Conference on ICCS (pp. 230–234). Singapore. Liu, A., & Lau, V. K. N. (2012). Joint power and antenna selection optimization for energy-efficient large distributed MIMO networks. In Proceedings of the IEEE Conference on ICCS (pp. 230–234). Singapore.
60.
Zurück zum Zitat Dai, H. (2006). Distributed versus co-located MIMO systems with correlated fading and shadowing. In Proceedings of the IEEE Conference on ICASSP (pp. 561–564). Toulouse. Dai, H. (2006). Distributed versus co-located MIMO systems with correlated fading and shadowing. In Proceedings of the IEEE Conference on ICASSP (pp. 561–564). Toulouse.
61.
Zurück zum Zitat Clark, M. V., Willis, T., Greenstein, L. J., & (2001). Distributed versus centralized antenna arrays in broadband wireless networks. In Proceedings of the IEEE Conference (pp. 33–37). Rhodes: VTC. Clark, M. V., Willis, T., Greenstein, L. J., & (2001). Distributed versus centralized antenna arrays in broadband wireless networks. In Proceedings of the IEEE Conference (pp. 33–37). Rhodes: VTC.
62.
Zurück zum Zitat Mohammed, S. K., Zaki, A., Chockalingam, A., & Rajan, B. S. (2009). High-rate space-time coded large-MIMO systems: Low-complexity detection and channel estimation. IEEE Journal of Selected Topics in Signal Processing, 3, 958–974.CrossRef Mohammed, S. K., Zaki, A., Chockalingam, A., & Rajan, B. S. (2009). High-rate space-time coded large-MIMO systems: Low-complexity detection and channel estimation. IEEE Journal of Selected Topics in Signal Processing, 3, 958–974.CrossRef
63.
Zurück zum Zitat Mohammed, S. K., Chockalingam, A., & Rajan, S. B. (2008). Low-complexity detection and performance in multi-gigabit high spectral efficiency wireless systems. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008) (pp. 1–5). Mohammed, S. K., Chockalingam, A., & Rajan, S. B. (2008). Low-complexity detection and performance in multi-gigabit high spectral efficiency wireless systems. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008) (pp. 1–5).
64.
Zurück zum Zitat Zirwas, W. (2015). Opportunistic CoMP for 5G massive MIMO multilayer networks. In Proceedings of 19th International ITG Workshop on Smart Antennas (WSA 2015) (pp. 1–7). Zirwas, W. (2015). Opportunistic CoMP for 5G massive MIMO multilayer networks. In Proceedings of 19th International ITG Workshop on Smart Antennas (WSA 2015) (pp. 1–7).
65.
Zurück zum Zitat Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., & Song, H. (2013). Automated small-cell deployment for heterogeneous cellular networks. IEEE Communications Magazine, 51(5), 46–53.CrossRef Guo, W., Wang, S., Chu, X., Zhang, J., Chen, J., & Song, H. (2013). Automated small-cell deployment for heterogeneous cellular networks. IEEE Communications Magazine, 51(5), 46–53.CrossRef
66.
Zurück zum Zitat Cheng, H. T., Callard, A., Senarath, G., Zhang, H., & Zhu, P. (2012). Step-wise optimal low power node deployment in LTE heterogeneous networks. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–4). Cheng, H. T., Callard, A., Senarath, G., Zhang, H., & Zhu, P. (2012). Step-wise optimal low power node deployment in LTE heterogeneous networks. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–4).
67.
Zurück zum Zitat Shimodaira, H., Tran, G. K., Sakaguchi, K., Araki, K., Kaneko, S., Miyazaki, N., et al. (2013). Optimization of picocell locations and its parameters in heterogeneous networks with hotspots. IEICE Transactions on Communications, 96(6), 1338–1347.CrossRef Shimodaira, H., Tran, G. K., Sakaguchi, K., Araki, K., Kaneko, S., Miyazaki, N., et al. (2013). Optimization of picocell locations and its parameters in heterogeneous networks with hotspots. IEICE Transactions on Communications, 96(6), 1338–1347.CrossRef
68.
Zurück zum Zitat Chen, C. S., Nguyen, V. M., & Thomas, L. (2012). On small cell network deployment: A comparative study of random and grid topologies. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). Chen, C. S., Nguyen, V. M., & Thomas, L. (2012). On small cell network deployment: A comparative study of random and grid topologies. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).
69.
Zurück zum Zitat Pak, Y., Min, K., & Choi, S. (2014). Performance evaluation of various small-cell deployment scenarios in small-cell networks. In 18th IEEE International Symposium on Consumer Electronics (ISCE 2014) (pp. 1–2). Pak, Y., Min, K., & Choi, S. (2014). Performance evaluation of various small-cell deployment scenarios in small-cell networks. In 18th IEEE International Symposium on Consumer Electronics (ISCE 2014) (pp. 1–2).
70.
Zurück zum Zitat Coletti, C., Mogensen, P., & Irmer, R. (2011). Deployment of LTE in-band relay and micro base stations in a realistic metropolitan scenario. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). Coletti, C., Mogensen, P., & Irmer, R. (2011). Deployment of LTE in-band relay and micro base stations in a realistic metropolitan scenario. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).
71.
Zurück zum Zitat Coletti, C., Hu, L., Huan, N., Kovács, I. Z., Vejlgaard, B., Irmer, R., & Scully, N. (2012). Heterogeneous deployment to meet traffic demand in a realistic LTE urban scenario. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). Coletti, C., Hu, L., Huan, N., Kovács, I. Z., Vejlgaard, B., Irmer, R., & Scully, N. (2012). Heterogeneous deployment to meet traffic demand in a realistic LTE urban scenario. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).
72.
Zurück zum Zitat Hu, L., Kovács, I. Z., Mogensen, P., Klein, O., & Stormer, W. (2011). Optimal new site deployment algorithm for heterogeneous cellular networks. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). Hu, L., Kovács, I. Z., Mogensen, P., Klein, O., & Stormer, W. (2011). Optimal new site deployment algorithm for heterogeneous cellular networks. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).
74.
Zurück zum Zitat Wang, H., Pan, Z., & Chih, L. I. (2014). Perspectives on high frequency small cell with ultra dense deployment. In IEEE International Conference on Communications in China (ICCC) (pp. 502–506). Wang, H., Pan, Z., & Chih, L. I. (2014). Perspectives on high frequency small cell with ultra dense deployment. In IEEE International Conference on Communications in China (ICCC) (pp. 502–506).
75.
Zurück zum Zitat Monteiro, P. P., & Gameiro, A. (2014). Hybrid fibre infrastructures for cloud radio access networks. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON) Monteiro, P. P., & Gameiro, A. (2014). Hybrid fibre infrastructures for cloud radio access networks. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON)
76.
Zurück zum Zitat Cai, Y., Yu, F. R., & Bu, S. (2016). Dynamic operations of cloud radio access networks (C-RAN) for mobile cloud computing systems. IEEE Transactions on Vehicular Technology, 65(3), 1536–1548.CrossRef Cai, Y., Yu, F. R., & Bu, S. (2016). Dynamic operations of cloud radio access networks (C-RAN) for mobile cloud computing systems. IEEE Transactions on Vehicular Technology, 65(3), 1536–1548.CrossRef
77.
Zurück zum Zitat Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.CrossRef Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.CrossRef
78.
Zurück zum Zitat Akyildiz, I. F., Wang, P., & Lin, S. (2015). SoftAir: A software defined networking architecture for 5G wireless systems. Computer Networks, 85, 1–18.CrossRef Akyildiz, I. F., Wang, P., & Lin, S. (2015). SoftAir: A software defined networking architecture for 5G wireless systems. Computer Networks, 85, 1–18.CrossRef
79.
Zurück zum Zitat Kreutz, D., Ramos, F. M. V., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. IEEE of the Proceedings, 103(1), 14–76.CrossRef Kreutz, D., Ramos, F. M. V., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. IEEE of the Proceedings, 103(1), 14–76.CrossRef
80.
Zurück zum Zitat Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.CrossRef Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.CrossRef
81.
Zurück zum Zitat Quek, T. Q., de la Roche, G., & Güvenç, I. (2013). Small cell networks: Deployment, PHY techniques, and resource management. Cambridge: Cambridge University Press.CrossRef Quek, T. Q., de la Roche, G., & Güvenç, I. (2013). Small cell networks: Deployment, PHY techniques, and resource management. Cambridge: Cambridge University Press.CrossRef
83.
Zurück zum Zitat Chin, W. H., Fan, Z., & Haines, R. (2014). Emerging technologies and research challenges for 5G wireless networks. IEEE Wireless Communications, 21(2), 106–112.CrossRef Chin, W. H., Fan, Z., & Haines, R. (2014). Emerging technologies and research challenges for 5G wireless networks. IEEE Wireless Communications, 21(2), 106–112.CrossRef
84.
Zurück zum Zitat Tavares, F. M., Berardinelli, G., Mahmood, N. H., Sorensen, T. B., & Mogensen, P. (2014). Inter-cell interference management using maximum rank planning in 5G small cell networks. In \(11^{th }\) International Symposium on Wireless Communications Systems (ISWCS) (pp. 628–632). Tavares, F. M., Berardinelli, G., Mahmood, N. H., Sorensen, T. B., & Mogensen, P. (2014). Inter-cell interference management using maximum rank planning in 5G small cell networks. In \(11^{th }\) International Symposium on Wireless Communications Systems (ISWCS) (pp. 628–632).
86.
Zurück zum Zitat Fehske, A. J., Viering, I., Voigt, J., Sartori, C., Redana, S., & Fettweis, G. (2014). Small-cell self-organizing wireless networks. Proceedings of the IEEE, 102, 334–350.CrossRef Fehske, A. J., Viering, I., Voigt, J., Sartori, C., Redana, S., & Fettweis, G. (2014). Small-cell self-organizing wireless networks. Proceedings of the IEEE, 102, 334–350.CrossRef
87.
Zurück zum Zitat Vilar, R., Bosshard, O., Magne, F., Lefevre, A., & Marti, J. (2013). Wireless backhaul architecture for small cells deployment exploiting Q-band frequencies. In 2013 Future Network and Mobile Summit (FutureNetworkSummit) (pp. 1–11). Vilar, R., Bosshard, O., Magne, F., Lefevre, A., & Marti, J. (2013). Wireless backhaul architecture for small cells deployment exploiting Q-band frequencies. In 2013 Future Network and Mobile Summit (FutureNetworkSummit) (pp. 1–11).
89.
Zurück zum Zitat Jafari, A. H., López-Pérez, D., Song, H., Claussen, H., Ho, L., & Zhang, J. (2015). Small cell backhaul: Challenges and prospective solutions. EURASIP Journal on Wireless Communications and Networking, 2015, 1–18.CrossRef Jafari, A. H., López-Pérez, D., Song, H., Claussen, H., Ho, L., & Zhang, J. (2015). Small cell backhaul: Challenges and prospective solutions. EURASIP Journal on Wireless Communications and Networking, 2015, 1–18.CrossRef
90.
Zurück zum Zitat Ishii, H., Kishiyama, Y., & Takahashi, H. (2012). A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In 2012 IEEE Globecom Workshops (GC Wkshps) (pp. 624–630). Ishii, H., Kishiyama, Y., & Takahashi, H. (2012). A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In 2012 IEEE Globecom Workshops (GC Wkshps) (pp. 624–630).
91.
Zurück zum Zitat Li, Q. C., Niu, H., Wu, G., & Hu, R. Q. (2013). Anchor-booster based heterogeneous networks with mmWave capable booster cells. In 2013 IEEE Globecom Workshops (GC Wkshps) (pp. 93–98). Li, Q. C., Niu, H., Wu, G., & Hu, R. Q. (2013). Anchor-booster based heterogeneous networks with mmWave capable booster cells. In 2013 IEEE Globecom Workshops (GC Wkshps) (pp. 93–98).
92.
Zurück zum Zitat Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., & Gosselin, S. (2016). Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks. Journal of Lightwave Technology, 34, 1963–1970.CrossRef Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., & Gosselin, S. (2016). Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks. Journal of Lightwave Technology, 34, 1963–1970.CrossRef
93.
Zurück zum Zitat Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6, 37–43.CrossRef Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6, 37–43.CrossRef
94.
Zurück zum Zitat Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.CrossRef Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.CrossRef
Metadaten
Titel
Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells
verfasst von
Mohammed H. Alsharif
Rosdiadee Nordin
Publikationsdatum
14.07.2016
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2017
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-016-0195-x

Weitere Artikel der Ausgabe 4/2017

Telecommunication Systems 4/2017 Zur Ausgabe

Neuer Inhalt