Skip to main content
Erschienen in: Journal of Scheduling 4/2023

04.05.2023

Exact and metaheuristic methods for a real-world examination timetabling problem

verfasst von: Mats Carlsson, Sara Ceschia, Luca Di Gaspero, Rasmus Ørnstrup Mikkelsen, Andrea Schaerf, Thomas Jacob Riis Stidsen

Erschienen in: Journal of Scheduling | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a portfolio of exact and metaheuristic methods for the rich examination timetabling problem introduced by Battistutta et al. (in: Hebrard, Musliu (eds) 17th International conference on the integration of constraint programming, artificial intelligence, and operations research (CPAIOR-2020), LNCS, vol 12296. Springer, Berlin, pp 69–81, 2020). The problem includes several real-world features that arise in Italian universities, such as examinations split into two parts, possible requirements of multiple rooms for a single examination, and unavailabilities and preferences for periods and rooms. We developed a CP model encoded in the MiniZinc modeling language and solved it with Gecode, as well as two MIP models solved with Gurobi. The first MIP model is encoded natively and the second one again in MiniZinc. Finally, we extended the metaheuristic method based on simulated annealing of Battistutta et al. by introducing a new neighborhood relation. We compare the different techniques on the real-world instances provided by Battistutta et al., which have been slightly refined by correcting some semantic issues. Finally, we developed a solution checker that is publicly available, together with all instances and solutions, for inspection and future comparisons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abou Kasm, O., Mohandes, B., Diabat, A., & El Khatib, S. (2019). Exam timetabling with allowable conflicts within a time window. Computers & Industrial Engineering, 127, 263–273.CrossRef Abou Kasm, O., Mohandes, B., Diabat, A., & El Khatib, S. (2019). Exam timetabling with allowable conflicts within a time window. Computers & Industrial Engineering, 127, 263–273.CrossRef
Zurück zum Zitat Al-Hawari, F., Al-Ashi, M., Abawi, F., & Alouneh, S. (2020). A practical three-phase ILP approach for solving the examination timetabling problem. International Transactions in Operational Research, 27(2), 924–944.CrossRef Al-Hawari, F., Al-Ashi, M., Abawi, F., & Alouneh, S. (2020). A practical three-phase ILP approach for solving the examination timetabling problem. International Transactions in Operational Research, 27(2), 924–944.CrossRef
Zurück zum Zitat Al-Yakoob, S. M., & Sherali, H. D. (2015). Mathematical models and algorithms for a high school timetabling problem. Computers & Operations Research, 61, 56–68.CrossRef Al-Yakoob, S. M., & Sherali, H. D. (2015). Mathematical models and algorithms for a high school timetabling problem. Computers & Operations Research, 61, 56–68.CrossRef
Zurück zum Zitat Al-Yakoob, S. M., Sherali, H. D., & Al-Jazzaf, M. (2010). A mixed-integer mathematical modeling approach to exam timetabling. Computational Management Science, 7(1), 19.CrossRef Al-Yakoob, S. M., Sherali, H. D., & Al-Jazzaf, M. (2010). A mixed-integer mathematical modeling approach to exam timetabling. Computational Management Science, 7(1), 19.CrossRef
Zurück zum Zitat Arbaoui, T., Boufflet, J. P., & Moukrim, A. (2015). Preprocessing and an improved MIP model for examination timetabling. Annals of Operations Research, 229(1), 19–40.CrossRef Arbaoui, T., Boufflet, J. P., & Moukrim, A. (2015). Preprocessing and an improved MIP model for examination timetabling. Annals of Operations Research, 229(1), 19–40.CrossRef
Zurück zum Zitat Arbaoui, T., Boufflet, J. P., & Moukrim, A. (2019). Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems. Computers & Operations Research, 106, 133–142.CrossRef Arbaoui, T., Boufflet, J. P., & Moukrim, A. (2019). Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems. Computers & Operations Research, 106, 133–142.CrossRef
Zurück zum Zitat Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., & Topan, E. (2020). Local search and constraint programming for a real-world examination timetabling problem. In E. Hebrard, N. Musliu (Eds.). 17th International conference on the integration of constraint programming, artificial intelligence, and operations research (CPAIOR-2020), LNCS, Vol. 12296 (pp. 69–81). Springer. Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., & Topan, E. (2020). Local search and constraint programming for a real-world examination timetabling problem. In E. Hebrard, N. Musliu (Eds.). 17th International conference on the integration of constraint programming, artificial intelligence, and operations research (CPAIOR-2020), LNCS, Vol. 12296 (pp. 69–81). Springer.
Zurück zum Zitat Battistutta, M., Schaerf, A., & Urli, T. (2017). Feature-based tuning of single-stage simulated annealing for examination timetabling. Annals of Operations Research, 252(2), 239–254.CrossRef Battistutta, M., Schaerf, A., & Urli, T. (2017). Feature-based tuning of single-stage simulated annealing for examination timetabling. Annals of Operations Research, 252(2), 239–254.CrossRef
Zurück zum Zitat Bellio, R., Ceschia, S., Di Gaspero, L., & Schaerf, A. (2021). Two-stage multi-neighborhood simulated annealing for uncapacitated examination timetabling. Computers and Operations Research, 132, 1–9.CrossRef Bellio, R., Ceschia, S., Di Gaspero, L., & Schaerf, A. (2021). Two-stage multi-neighborhood simulated annealing for uncapacitated examination timetabling. Computers and Operations Research, 132, 1–9.CrossRef
Zurück zum Zitat Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.CrossRef Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.CrossRef
Zurück zum Zitat Bilgin, B., Özcan, E., & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam timetabling. In International conference on the practice and theory of automated timetabling (pp. 394–412). Springer. Bilgin, B., Özcan, E., & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam timetabling. In International conference on the practice and theory of automated timetabling (pp. 394–412). Springer.
Zurück zum Zitat Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311–336). Springer. Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311–336). Springer.
Zurück zum Zitat Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course timetabling: Formulations, data formats, instances, validation, visualization, and results. Annals of Operations Research, 194(1), 59–70.CrossRef Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course timetabling: Formulations, data formats, instances, validation, visualization, and results. Annals of Operations Research, 194(1), 59–70.CrossRef
Zurück zum Zitat Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.CrossRef Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.CrossRef
Zurück zum Zitat Burke, E. K., & Bykov, Y. (2016). An adaptive flex-deluge approach to university exam timetabling. INFORMS Journal on Computing, 28(4), 781–794.CrossRef Burke, E. K., & Bykov, Y. (2016). An adaptive flex-deluge approach to university exam timetabling. INFORMS Journal on Computing, 28(4), 781–794.CrossRef
Zurück zum Zitat Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Algorithmic strategies and applications. Journal of the Operational Research Society, 74, 373–383.CrossRef Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Algorithmic strategies and applications. Journal of the Operational Research Society, 74, 373–383.CrossRef
Zurück zum Zitat Cataldo, A., Ferrer, J. C., Miranda, J., Rey, P. A., & Sauré, A. (2017). An integer programming approach to curriculum-based examination timetabling. Annals of Operations Research, 258(2), 369–393.CrossRef Cataldo, A., Ferrer, J. C., Miranda, J., Rey, P. A., & Sauré, A. (2017). An integer programming approach to curriculum-based examination timetabling. Annals of Operations Research, 258(2), 369–393.CrossRef
Zurück zum Zitat Daskalaki, S., & Birbas, T. (2005). Efficient solutions for a university timetabling problem through integer programming. European Journal of Operational Research, 160(1), 106–120.CrossRef Daskalaki, S., & Birbas, T. (2005). Efficient solutions for a university timetabling problem through integer programming. European Journal of Operational Research, 160(1), 106–120.CrossRef
Zurück zum Zitat Dekker, J. J., Björdal, G., Carlsson, M., Flener, P., & Monette, J. (2017). Auto-tabling for subproblem presolving in MiniZinc. Constraints, 22(4), 512–529.CrossRef Dekker, J. J., Björdal, G., Carlsson, M., Flener, P., & Monette, J. (2017). Auto-tabling for subproblem presolving in MiniZinc. Constraints, 22(4), 512–529.CrossRef
Zurück zum Zitat Dekker, J.J., de la Banda, M.G., Schutt, A., Stuckey, P.J., & Tack, G. (2018). Solver-independent large neighbourhood search. In J. N. Hooker (Ed.) CP 2018, LNCS, Vol. 11008 (pp. 81–98). Springer. Dekker, J.J., de la Banda, M.G., Schutt, A., Stuckey, P.J., & Tack, G. (2018). Solver-independent large neighbourhood search. In J. N. Hooker (Ed.) CP 2018, LNCS, Vol. 11008 (pp. 81–98). Springer.
Zurück zum Zitat Demeester, P., Bilgin, B., De Causmaecker, P., & Vanden Berghe, G. (2012). A hyperheuristic approach to examination timetabling problems: Benchmarks and a new problem from practice. Journal of Scheduling, 15(1), 83–103.CrossRef Demeester, P., Bilgin, B., De Causmaecker, P., & Vanden Berghe, G. (2012). A hyperheuristic approach to examination timetabling problems: Benchmarks and a new problem from practice. Journal of Scheduling, 15(1), 83–103.CrossRef
Zurück zum Zitat Genc, B., & O’Sullivan, B. (2020). A two-phase constraint programming model for examination timetabling at University College Cork. In International conference on principles and practice of constraint programming (pp. 724–742). Springer. Genc, B., & O’Sullivan, B. (2020). A two-phase constraint programming model for examination timetabling at University College Cork. In International conference on principles and practice of constraint programming (pp. 724–742). Springer.
Zurück zum Zitat Güler, M. G., Geçici, E., Köroğlu, T., & Becit, E. (2021). A web-based decision support system for examination timetabling. Expert Systems with Applications, 183, 1–11.CrossRef Güler, M. G., Geçici, E., Köroğlu, T., & Becit, E. (2021). A web-based decision support system for examination timetabling. Expert Systems with Applications, 183, 1–11.CrossRef
Zurück zum Zitat Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo methods. Chapman and Hall. Hammersley, J. M., & Handscomb, D. C. (1964). Monte Carlo methods. Chapman and Hall.
Zurück zum Zitat June, T. L., Obit, J. H., Leau, Y. B., & Bolongkikit, J. (2019). Implementation of constraint programming and simulated annealing for examination timetabling problem. In R. Alfred, Y. Lim, A. Ibrahim, & P. Anthony (Eds.), Computational Science and Technology. Lecture Notes in Electrical Engineering (pp. 175–184). Springer. June, T. L., Obit, J. H., Leau, Y. B., & Bolongkikit, J. (2019). Implementation of constraint programming and simulated annealing for examination timetabling problem. In R. Alfred, Y. Lim, A. Ibrahim, & P. Anthony (Eds.), Computational Science and Technology. Lecture Notes in Electrical Engineering (pp. 175–184). Springer.
Zurück zum Zitat Kahar, M. M., & Kendall, G. (2010). The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution. European Journal of Operational Research, 207(2), 557–565.CrossRef Kahar, M. M., & Kendall, G. (2010). The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution. European Journal of Operational Research, 207(2), 557–565.CrossRef
Zurück zum Zitat Kahar, M. M., & Kendall, G. (2015). A great deluge algorithm for a real-world examination timetabling problem. Journal of the Operational Research Society, 66(1), 116–133.CrossRef Kahar, M. M., & Kendall, G. (2015). A great deluge algorithm for a real-world examination timetabling problem. Journal of the Operational Research Society, 66(1), 116–133.CrossRef
Zurück zum Zitat Keskin, M. E., Döyen, A., Akyer, H., & Güler, M. G. (2018). Examination timetabling problem with scarce resources: A case study. European Journal of Industrial Engineering, 12(6), 855–874.CrossRef Keskin, M. E., Döyen, A., Akyer, H., & Güler, M. G. (2018). Examination timetabling problem with scarce resources: A case study. European Journal of Industrial Engineering, 12(6), 855–874.CrossRef
Zurück zum Zitat Kristiansen, S., Sørensen, M., & Stidsen, T. R. (2015). Integer programming for the generalized high school timetabling problem. Journal of Scheduling, 18(4), 377–392.CrossRef Kristiansen, S., Sørensen, M., & Stidsen, T. R. (2015). Integer programming for the generalized high school timetabling problem. Journal of Scheduling, 18(4), 377–392.CrossRef
Zurück zum Zitat Lach, G., & Lübbecke, M. E. (2008). Optimal university course timetables and the partial transversal polytope. In International workshop on experimental and efficient algorithms (pp. 235–248). Springer. Lach, G., & Lübbecke, M. E. (2008). Optimal university course timetables and the partial transversal polytope. In International workshop on experimental and efficient algorithms (pp. 235–248). Springer.
Zurück zum Zitat Lach, G., & Lübbecke, M. E. (2012). Curriculum based course timetabling: New solutions to Udine benchmark instances. Annals of Operations Research, 194(1), 255–272.CrossRef Lach, G., & Lübbecke, M. E. (2012). Curriculum based course timetabling: New solutions to Udine benchmark instances. Annals of Operations Research, 194(1), 255–272.CrossRef
Zurück zum Zitat Leite, N., Fernandes, C., Melício, F., & Rosa, A. (2018). A cellular memetic algorithm for the examination timetabling problem. Computers and Operations Research, 94, 118–138.CrossRef Leite, N., Fernandes, C., Melício, F., & Rosa, A. (2018). A cellular memetic algorithm for the examination timetabling problem. Computers and Operations Research, 94, 118–138.CrossRef
Zurück zum Zitat Leite, N., Melício, F., & Rosa, A. (2019). A fast simulated annealing algorithm for the examination timetabling problem. Expert Systems with Applications, 122, 137–151.CrossRef Leite, N., Melício, F., & Rosa, A. (2019). A fast simulated annealing algorithm for the examination timetabling problem. Expert Systems with Applications, 122, 137–151.CrossRef
Zurück zum Zitat Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms. Information Processing Letters, 47(4), 173–180.CrossRef Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms. Information Processing Letters, 47(4), 173–180.CrossRef
Zurück zum Zitat Maniezzo, V., Boschetti, M. A., & Stützle, T. (2021). Matheuristics: Algorithms and implementations. Springer. Maniezzo, V., Boschetti, M. A., & Stützle, T. (2021). Matheuristics: Algorithms and implementations. Springer.
Zurück zum Zitat McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., & Qu, R. (2007). The second international timetabling competition: Examination timetabling track. Technical Report. QUB/IEEE/Tech/ITC2007/Exam/v4.0/17. Queen’s University. McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., & Qu, R. (2007). The second international timetabling competition: Examination timetabling track. Technical Report. QUB/IEEE/Tech/ITC2007/Exam/v4.0/17. Queen’s University.
Zurück zum Zitat Muklason, A., Parkes, A. J., Özcan, E., McCollum, B., & McMullan, P. (2017). Fairness in examination timetabling: Student preferences and extended formulations. Applied Soft Computing, 55, 302-318.CrossRef Muklason, A., Parkes, A. J., Özcan, E., McCollum, B., & McMullan, P. (2017). Fairness in examination timetabling: Student preferences and extended formulations. Applied Soft Computing, 55, 302-318.CrossRef
Zurück zum Zitat Müller, T. (2016). Real-life examination timetabling. Journal of Scheduling, 19(3), 257–270.CrossRef Müller, T. (2016). Real-life examination timetabling. Journal of Scheduling, 19(3), 257–270.CrossRef
Zurück zum Zitat Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). MiniZinc: Towards a standard CP modelling language. In: C. Bessière (Ed). CP 2007, LNCS, Vol .4741 (pp 529–543). Springer, the MiniZinc toolchain is available at https://www.minizinc.org Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). MiniZinc: Towards a standard CP modelling language. In: C. Bessière (Ed). CP 2007, LNCS, Vol .4741 (pp 529–543). Springer, the MiniZinc toolchain is available at https://​www.​minizinc.​org
Zurück zum Zitat Ohrimenko, O., Stuckey, P. J., & Codish, M. (2009). Propagation via lazy clause generation. Constraints, 14(3), 357–391.CrossRef Ohrimenko, O., Stuckey, P. J., & Codish, M. (2009). Propagation via lazy clause generation. Constraints, 14(3), 357–391.CrossRef
Zurück zum Zitat Özcan, E., & Ersoy, E. (2005). Final exam scheduler-fes. In 2005 IEEE congress on evolutionary computation, Vol. 2 (pp. 1356–1363). IEEE. Özcan, E., & Ersoy, E. (2005). Final exam scheduler-fes. In 2005 IEEE congress on evolutionary computation, Vol. 2 (pp. 1356–1363). IEEE.
Zurück zum Zitat Parkes, A. J., & Özcan, E. (2010). Properties of Yeditepe examination timetabling benchmark instances. In Proceedings of the 8th international conference on the practice and theory of automated timetabling (pp 531–534). Parkes, A. J., & Özcan, E. (2010). Properties of Yeditepe examination timetabling benchmark instances. In Proceedings of the 8th international conference on the practice and theory of automated timetabling (pp 531–534).
Zurück zum Zitat Qu, R., Burke, E. K., McCollum, B., Merlot, L., & Lee, S. (2009). A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling, 12(1), 55–89.CrossRef Qu, R., Burke, E. K., McCollum, B., Merlot, L., & Lee, S. (2009). A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling, 12(1), 55–89.CrossRef
Zurück zum Zitat Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.CrossRef Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.CrossRef
Zurück zum Zitat Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In M. Maher, J. F. Puget (Eds.) CP 1998, LNCS, Vol. 1520 (pp. 417–431). Springer. Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In M. Maher, J. F. Puget (Eds.) CP 1998, LNCS, Vol. 1520 (pp. 417–431). Springer.
Zurück zum Zitat Sørensen, M., & Dahms, F. H. (2014). A two-stage decomposition of high school timetabling applied to cases in Denmark. Computers & Operations Research, 43, 36–49.CrossRef Sørensen, M., & Dahms, F. H. (2014). A two-stage decomposition of high school timetabling applied to cases in Denmark. Computers & Operations Research, 43, 36–49.CrossRef
Zurück zum Zitat Woumans, G., De Boeck, L., Beliën, J., & Creemers, S. (2016). A column generation approach for solving the examination-timetabling problem. European Journal of Operational Research, 253(1), 178–194.CrossRef Woumans, G., De Boeck, L., Beliën, J., & Creemers, S. (2016). A column generation approach for solving the examination-timetabling problem. European Journal of Operational Research, 253(1), 178–194.CrossRef
Metadaten
Titel
Exact and metaheuristic methods for a real-world examination timetabling problem
verfasst von
Mats Carlsson
Sara Ceschia
Luca Di Gaspero
Rasmus Ørnstrup Mikkelsen
Andrea Schaerf
Thomas Jacob Riis Stidsen
Publikationsdatum
04.05.2023
Verlag
Springer US
Erschienen in
Journal of Scheduling / Ausgabe 4/2023
Print ISSN: 1094-6136
Elektronische ISSN: 1099-1425
DOI
https://doi.org/10.1007/s10951-023-00778-6

Weitere Artikel der Ausgabe 4/2023

Journal of Scheduling 4/2023 Zur Ausgabe

Premium Partner