Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2024

Open Access 01.02.2024

Exact solutions, symmetry groups and conservation laws for some (2+1)-dimensional nonlinear physical models

verfasst von: M. M. Hassan, A. R. Shehata, M. S. Abdel-Daym

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2024

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the Bernoulli sub-equation function method is used to construct new exact travelling wave solutions for two important physical models: (2+1)-dimensional hyperbolic nonlinear Schrödinger (HNLS) equation and (2+1)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation. These solutions provide valuable insights into the behavior of these models, described in terms of exponential and hyperbolic tangent (tanh) functions. The study also involves an exploration of the infinitesimal generators and symmetry groups through the Lie symmetry method. In addition, by using multiplier approach, the conservation laws are established for these models. Graphical simulation of some solutions in the form of two-dimensional and three-dimensional are plotted to understanding of the underlying physical phenomena and mathematical properties of the (2+1)-dimensional HNLS and HFSC equations. The solutions and graphing are performed using Maple software.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Many physical phenomena that arising in various fields of science can be described by nonlinear evolution equations (NLEEs) for instance optics, plasma, solid state physics, chemical physics, and mathematical physics. To understand these nonlinear phenomena, many physicist and mathematicians have made efforts to get various exact solutions of them. The investigation of the exact solutions is an important to provide better information about the mechanism and the applications of NLEEs. Abundant methods are extensively studied to obtain exact solutions, for example the B\(\ddot{a}\)cklund transform (Rogers and Shadwick 1982; El-Sabbagh et al. 2015), the extended tanh-function method (Abdelsalam 2017), the F-expansion method (Zhou et al. 2003), sine-cosine method (Wazwaz 2004), the Jacobi elliptic function (JEF) method (Liu et al. 2001), the Kudryashov method (Kudryashov 2012; Malik et al. 2023), the extended Kudryashov method (Hassan et al. 2014, 2022a), the Bernoulli sub-equation function method (Baskonus et al. 2015), the lie point symmetry method (Naz 2012; Hassan et al. 2022b; Yong et al. 2012) and other methods (Hassan 2004; Khater et al. 2010; Shehata 2010; Shehata and Abu-Amra 2018).
In this study, we apply the Bernoulli sub-equation function method to construct exact solutions of two nonlinear models. Also, we obtain the conservation laws by the Lie symmetry method and multiplier approach. The first model is (2+1)-dimensional hyperbolic nonlinear Schrödinger (HNLS) equation (Apeanti et al. 2019; Tebue et al. 2020; Seadawy et al. 2018; Guo and Lin 2012), which given as
$$\begin{aligned} \begin{array}{l} i\,\Theta _{y}-\frac{1}{2}\,(\Theta _{xx}-\Theta _{tt})+|\Theta |^{2}\,\Theta =0, \end{array} \end{aligned}$$
(1.1)
and the second model (2+1)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation (Bashar et al. 2021; Han et al. 2022; Hosseini et al. 2021; Sahoo and Tripathy 2022), in the form
$$\begin{aligned} \begin{array}{l} i\,\Theta _{t}+\alpha _{1}\,\Theta _{xx}+\alpha _{2}\,\Theta _{yy}+\alpha _{3}\,\Theta _{xy}-\alpha _{4}\,|\Theta |^{2}\,\Theta =0, \end{array} \end{aligned}$$
(1.2)
where \(\Theta (x,y,t)\) is a complex envelope of the electric field, \(x,\,y\) and t denote the scaled spatial and time coordinates, respectively and the coefficients \(\alpha _{i},\,(i=1,2,3,4)\) are real constants given by
$$\begin{aligned} \alpha _{1}=\delta ^{4}\,(\chi +\chi _{2}),\,\,\,\alpha _{2}=\delta ^{4}\,(\chi _{1}+\chi _{2}),\,\,\,\alpha _{3}=2\,\delta ^{4}\,\chi _{2},\,\,\,\alpha _{4}=2\,\delta ^{4}\,\Omega , \end{aligned}$$
where the parameters \(\chi ,\,\chi _{1}\) represent the coefficients of bilinear exchange interactions in the xy-plane, \(\chi _{2}\) denotes the neighboring interaction along the diagonal, \(\Omega\) is the uniaxial crystal field anisotropy parameter, and \(\delta\) is a lattice parameter. Equation (1.1) expresses of the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics, and also governs the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics. Moreover, this equation is used to describe the dynamics of optical soliton promulgation in optical fibers. The (2+1)-dimensional HFSC equation show a significant role in modern theory of magnets which defines nonlinear dynamics of magnets. Heisenberg-type models for spin-spin interactions have been proposed to explain the magnetic ordering in ferromagnetic materials. Also, Eq. (1.2) can be used to depict the propagation of long waves, which has many applications in the percolation of water.
Different methods have been used to extract solutions for Eq. (1.1). Apeanti et al. (2019) using generalized elliptic equation rational expansion method to construct several types of complex solutions. The exact solutions of (1.1) was considered by Tebue et al. (2020) in terms of JEFs. Also, Seadawy et al. (2018) derived new many solutions such as dark, bright, combined dark-bright, singular and combined singular solitons by using the extended sinh-Gordon equation expansion method. Moreover, Guo and Lin (2012) applied the classical Lie group symmetry method to obtain the Lie-point symmetries and also derive exact solutions. Several types of solutions of Eq. (1.2) are obtained by many researchers with different techniques (Bashar et al. 2021; Han et al. 2022; Sahoo and Tripathy 2022). This includes the \(\exp (-\varphi (\xi ))\)-expansion and the extended tanh-function methods in Bashar et al. (2021), the complete discrimination system method (Han et al. 2022) and modified version of the Jacobi elliptic expansion method (Hosseini et al. 2021). Although, many authors studied (2+1)-dimensional HNLS and (2+1)-dimensional HFSC equations, we study these models by the Bernoulli sub-equation function method to obtain other solutions. Furthermore, conservation laws for these models are derived by using multiplier approach (Naz 2012).
In the 19th century, Lie group classification method is initialed by Sophus Lie Fritzsche (1999) and studied by many authors (Naz 2012; Hassan et al. 2022b; Yong et al. 2012; Hassan et al. 2022; Singh et al. 2022; Devi et al. 2021). Lie symmetry analysis is one of the important approaches to investigate the exact solutions of nonlinear partial differential equations  ( NLPDEs ). Lie point symmetry and extended F-expansion methods are applied to obtain exact solutions and conservation laws of ion sound and Langmuir waves (ISLWs) model (Hassan et al. 2022). In Singh et al. (2022), the lie group theoretic approach was employed to find the similarity reductions and analytic solutions of the (2+1)-dimensional modified dispersive water-wave system. A number of methods for finding exact solutions of NLPDEs have been applied by the authors in Malik et al. (2023); Akbulut et al. (2023) and Mirzazadeh et al. (2023). The goal of this paper is to obtain exact solutions and conservation laws for the models (1.1) and (1.2).
This paper is formed as follows: Firstly, we summarized the analytical method that we will use to construct novel exact solutions for Eqs. (1.1) and (1.2) in Sect. 2. In Sect. 3, we get the solutions of the studied models. The geometrical shape of some solutions in the form of two-dimensional and three-dimensional have been plotted. Furthermore, the Lie point symmetry, group transformations, new solutions corresponding to the symmetry groups and the conservation laws for (1.1) and (1.2) are obtained in Sects. 4 and 5, respectively. Finally, conclusions of the paper are presented.

2 Description of the Bernoulli sub-equation function method

In this section, we summarize the Bernoulli sub-equation function method (Baskonus et al. 2015) as follows:
Consider a NLPDE with independent variables \(x,\,y\) and t
$$\begin{aligned} G(p,p_{x},p_{y},p_{t},p_{xx},p_{yy},p_{tt},...)=0. \end{aligned}$$
(2.1)
Step 1 Suppose that \(\,p(x,y,t)=P(\alpha ),\,\, \alpha =x+\rho \,y-\sigma \,t+\alpha _{0}.\) where \(\rho\) and \(\sigma\) are constants to be evaluated later and \(\alpha _{0}\) is an arbitrary constant. Then (2.1) is transformed to an ordinary differential equation (ODE)
$$\begin{aligned} H(P,\, P^{\prime },\, P^{\prime \prime },...)=0, \end{aligned}$$
(2.2)
Step 2 We propose the solutions of (2.2) as the following:
$$\begin{aligned} p(x,y,t)=P(\alpha )= \sum _{i=0}^{K}\, d_{i} W^{i}(\alpha ), \end{aligned}$$
(2.3)
where
$$\begin{aligned} W^{\prime }(\alpha )= a\,W(\alpha )+b\,W^{S}(\alpha ),\,a\ne 0,\,b\ne 0,\,\,\,S \in R-\{{0,1\}}. \end{aligned}$$
(2.4)
By balancing principle, we can calculate a relationship for K and S. The balancing number K is a positive integer and we will take the corresponding S in (2.4) by various positive integer values to derive many solitary wave solutions of Eq. (2.2). Also, the solution of Bernoulli differential Eq. (2.4) given as
$$\begin{array}{*{20}l} {W(\alpha ) = \left[ {\frac{{ - b}}{a} + \frac{c}{{e^{{a{\kern 1pt} (S - 1){\kern 1pt} \alpha }} }}} \right]^{{\frac{1}{{1 - S}}}} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} a \ne b,} \hfill \\ {W(\alpha ) = \left[ {\frac{{(c - 1) + (c + 1){\mkern 1mu} {\text{tanh}}\left( {\frac{{a{\mkern 1mu} (1 - S){\mkern 1mu} \alpha }}{2}} \right)}}{{1 - {\text{tanh}}\left( {\frac{{a{\mkern 1mu} (1 - S){\mkern 1mu} \alpha }}{2}} \right)}}} \right]^{{\frac{1}{{1 - S}}}} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} a = b,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} c \in R.} \hfill \\ \end{array}$$
(2.5)
Step 3 Putting (2.3) with (2.4) in (2.2), we can obtain a polynomial in \(W^{i}(\alpha )\). Setting each coefficients of it to zero, we get a system of algebraic equations for \(d_{i}, (i=0,1,\, 2,\ldots , \, K)\) and a. Solving the system by using Mathematica or Maple and substituting the coefficients into (2.3), then the general formula solutions of the NLPDE (2.1) can be constructed.
Step 4 Substituting the solutions of \(W(\alpha )\) that given in (2.5) into the general formal solutions that we obtained, we get exact solutions of Eq. (2.1).

3 The exact solutions

In this section, we apply the Bernoulli sub-equation function method to obtain the exact solutions of the studied models (1.1) and (1.2).

3.1 The exact solution of (2+1)-dimensional HNLS equation

To get the solutions of (1.1), we look for the solution as
$$\begin{aligned} \Theta (x,y,t)=P(\alpha )\,e^{i\,\beta },\,\,\,\,\alpha =x+\rho \,y-\sigma \,t+\alpha _{0},\,\,\,\,\beta =l\,x+r\,y+\omega \,t,\end{aligned}$$
(3.1)
where \(\rho ,\,\sigma ,\,l,\,r\) and \(\omega\) are constants to be calculated. Putting (3.1) into (1.1) and splitting the real and the imaginary parts, we get
$$\begin{aligned} (\rho -l-\sigma \,\omega )\,P^{\prime }=0\,\,\,\,\,\Rightarrow \rho =(l+\sigma \,\omega ), \end{aligned}$$
(3.2)
$$\begin{aligned} (\sigma ^{2}-1)\,P^{\prime \prime }+(l^{2}-\omega ^{2}-2\,r)\,P+2\,P^{3}=0. \end{aligned}$$
(3.3)
By applying the Bernoulli sub-equation function method and after balancing procedure, we get \(S=K+1\). Now, we may choose the following three values of the parameter K to construct new exact solitary wave solutions of Eq. (1.1):
Case 1 If we put \(K=1\), then \(S=2\). Thus (2.3) and (2.4) take the form
$$\begin{aligned} P(\alpha )=d_{0}+d_{1}\,W(\alpha ), \end{aligned}$$
(3.4)
$$\begin{aligned} W^{\prime }(\alpha )= a\,W(\alpha )+b\,W^{2}(\alpha ), \end{aligned}$$
(3.5)
where \(\,d_{0}, \,d_{1}, \,d_{2},\,a\) and b are undetermined constants. Putting (3.4) into (3.3) and using (3.5), we get a polynomial in \(W(\alpha )\). Setting all coefficients of it equal to zero and with the help of Maple, we have
$$\begin{aligned} a=\pm {\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{{1-\sigma }^{2}}}} },\,\,d_{{0}}=\pm \frac{1}{2}\,\sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}},\,\,d_{{1}}=\pm \sqrt{1-{\sigma }^{2}}\,\,b. \end{aligned}$$
(3.6)
Substituting (3.6) into (3.4) with (2.5) and (3.1) we obtain the solution of model (1.1) as,
$$\Theta (x,y,t) = \left\{ {\begin{array}{*{20}l} {\left[ { \pm \frac{1}{2}{\mkern 1mu} \sqrt {2{\mkern 1mu} \omega ^{2} + 4{\mkern 1mu} r - 2{\mkern 1mu} l^{2} } \pm \frac{{{\mkern 1mu} b{\mkern 1mu} \sqrt {1 - \sigma ^{2} } {\mkern 1mu} }}{{ \pm b{\mkern 1mu} \sqrt {\frac{{1 - \sigma ^{2} }}{{2{\mkern 1mu} \omega ^{2} + 4{\mkern 1mu} r - 2{\mkern 1mu} l^{2} }}} + \frac{c}{{{\text{e}}^{{ \pm \sqrt {\frac{{2{\kern 1pt} \omega ^{2} + 4{\kern 1pt} r - 2{\kern 1pt} l^{2} }}{{1 - \sigma ^{2} }}} {\kern 1pt} {\kern 1pt} \alpha }} }}}}} \right]e^{{i{\kern 1pt} \beta }} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} a \ne b,} \hfill \\ {} \hfill \\ {\sqrt {2{\mkern 1mu} \omega ^{2} + 4{\mkern 1mu} r - 2{\mkern 1mu} l^{2} } \left[ { \pm \frac{1}{2} \pm \frac{{1 - {\text{tanh}}\left( { \pm \frac{1}{2}{\mkern 1mu} \sqrt {\frac{{2{\mkern 1mu} \omega ^{2} + 4{\mkern 1mu} r - 2{\mkern 1mu} l^{2} }}{{1 - \sigma ^{2} }}} {\mkern 1mu} {\mkern 1mu} \alpha } \right)}}{{(c - 1) + (c + 1){\mkern 1mu} {\text{tanh}}\left( { \pm \frac{1}{2}{\mkern 1mu} \sqrt {\frac{{2{\mkern 1mu} \omega ^{2} + 4{\mkern 1mu} r - 2{\mkern 1mu} l^{2} }}{{1 - \sigma ^{2} }}} {\mkern 1mu} {\mkern 1mu} \alpha } \right)}}} \right]e^{{i{\kern 1pt} \beta }} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} a = b,} \hfill \\ \end{array} } \right.$$
(3.7)
where \(\alpha =x+\rho \,y-\sigma \,t+\alpha _{0}\) and \(\beta =l\,x+r\,y+\omega \,t\).
Case 2 If we take \(K=2\), then \(S=3\). Therefor (2.3) and (2.4) take the form
$$\begin{aligned}{} & {} P(\alpha )=d_{0}+d_{1}\,W(\alpha )+d_{2}\,W^2(\alpha ), \end{aligned}$$
(3.8)
$$\begin{aligned}{} & {} W^{\prime }(\alpha )= a\,W(\alpha )+b\,W^{3}(\alpha ). \end{aligned}$$
(3.9)
Setting (3.8) into (3.3) and using (3.9), we get a polynomial in \(W(\alpha )\). Setting all coefficients of it equal to zero and with the aid of Maple, we obtain
$$\begin{aligned} a=\pm \frac{1}{2}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} },\,\,d_{{0}}=\pm \frac{1}{2}\,\sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}},\,\,d_{{1}}=0,\,\,d_{{2}}=\pm 2\,\sqrt{1-{\sigma }^{2}}\,\,b. \end{aligned}$$
(3.10)
Putting (3.10) into (3.8) with (2.5) and (3.1) we obtain the solution of model (1.1) as,
$$\begin{aligned} \Theta (x,y,t)=\left\{ \begin{array}{l}\left [\pm \frac{1}{2}\,\sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}\pm \frac{2\,b\,\sqrt{1-{\sigma }^{2}}}{ \pm 2\,b\,{\sqrt{\frac{1-{\sigma }^{2}}{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}}}+\frac{c}{{\textrm{e}^{{\pm \sqrt{\frac{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}{1-{\sigma }^{2}}}\,\,\alpha }}}}} \right ]\,e^{i\,\beta },\,\,\,\,\,\,\,\,\,\,\,\,\,\,a\ne b, \\ \\ \sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}\,\left [\pm \frac{1}{2}\pm \frac{1-\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} }\,\,\alpha )}{(c-1)+(c+1)\,\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} }\,\,\alpha )}\right ]\,\,e^{i\,\beta },\,\,\,\,\,\,\,\,\,a= b. \end{array}\right. \end{aligned}$$
(3.11)
Case 3 If we let \(K=3\), then \(S=4\). So (2.3) and (2.4) take the form
$$\begin{aligned}{} & {} P(\alpha )=d_{0}+d_{1}\,W(\alpha )+d_{2}\,W^2(\alpha )+d_{3}\,W^3(\alpha ), \end{aligned}$$
(3.12)
$$\begin{aligned}{} & {} W^{\prime }(\alpha )= a\,W(\alpha )+b\,W^{4}(\alpha ). \end{aligned}$$
(3.13)
Substituting (3.12) into (3.3) and using (3.13), we get a polynomial in \(W(\alpha )\). Setting all coefficients of it equal to zero and with the Maple software, we get
$$\begin{aligned} a=\pm \frac{1}{3}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} },\,\,d_{{0}}=\pm \frac{1}{2}\,\sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}},\,\,d_{{1}}=d_{{2}}=0,\,\,d_{{3}}=\pm \,3\,\sqrt{1-{\sigma }^{2}}\,\,b. \end{aligned}$$
(3.14)
Putting (3.14) into (3.12) with (2.5) and (3.1) we have the solution of model (1.1) as,
$$\begin{aligned} \Theta (x,y,t)=\left\{ \begin{array}{l}\left [\pm \frac{1}{2}\,\sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}\pm \frac{3\,b\,\sqrt{1-{\sigma }^{2}}}{ \pm 3\,b\,{\sqrt{\frac{1-{\sigma }^{2}}{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}}}+\frac{c}{{\textrm{e}^{{\pm \sqrt{\frac{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}{1-{\sigma }^{2}}}\,\,\alpha }}}}} \right ]\,e^{i\,\beta },\,\,\,\,\,\,\,\,\,\,\,\,\,\,a\ne b,\\ \\ \sqrt{2\,{\omega }^{2}+4\,r-2\,{l}^{2}}\,\left [\pm \frac{1}{2}\pm \frac{1-\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} }\,\,\alpha )}{(c-1)+(c+1)\,\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{\frac{ {2\,{\omega }^{2}+4\,r-2\,{l}^{2}}}{{1-{\sigma }^{2}}}} }\,\,\alpha )}\right ]\,\,e^{i\,\beta },\,\,\,\,\,\,\,\,\,a= b. \end{array}\right. \end{aligned}$$
(3.15)
From the previous cases when \(a\ne b\), the solutions that we obtained are similar to each others, but with a simple difference in the second term of these solutions. In the other hand at \(a= b\) the solutions are the same.

3.2 The exact solution of (2+1)-dimensional HFSC equation

To construct the solutions of (1.2). Putting (3.1) in (1.2) and splitting the real and the imaginary parts, we have
$$\begin{aligned}{} & {} [l\,(2\,\alpha _{1}+\rho \,\alpha _{3})+r\,(2\,\rho \,\alpha _{2}+\alpha _{3})-\sigma ]\,P^{\prime }=0\,\,\,\,\,\Rightarrow \sigma =l\,(2\,\alpha _{1}+\rho \,\alpha _{3})+r\,(2\,\rho \,\alpha _{2}+\alpha _{3}), \end{aligned}$$
(3.16)
$$\begin{aligned}{} & {} (\alpha _{1}+\alpha _{2}\,\rho ^{2}+\alpha _{3}\,\rho )\,P^{\prime \prime }-(\omega +\alpha _{1}\, l^{2}+\alpha _{2}\,r^2+\alpha _{3}\,r\,l)\,P-\alpha _{4}\,P^{3}=0. \end{aligned}$$
(3.17)
By using the Bernoulli sub-equation function method and after balancing procedure, we get \(S=K+1\). Now, we may choose the following three values of the parameter K to construct new exact solitary wave solutions of Eq. (1.2):
Case 1 If we put \(K=1\), then \(S=2\). Thus (2.3) and (2.4) are take the same form that given in (3.4) and (3.5), respectively. Putting (3.4) into (3.17) and using (3.5), we get a polynomial in \(W(\alpha )\). Setting all coefficients of it equal to zero and with the help of Maple, we have
$$\begin{aligned} a=\pm \sqrt{-{\frac{2\,({l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2}\alpha _{{2 }}+\omega )}{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{ {1}}}}},\,\,\,\,d_{{0}}=\pm \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2} \alpha _{{2}}+\omega }{\alpha _{{4}}}}},\, \end{aligned}$$
$$\begin{aligned} d_{{1}}=\pm \sqrt{{\frac{2\,({\rho }^{2}\alpha _{{2}}+\alpha _{{1}} +\rho \,\alpha _{{3}})}{\alpha _{{4}}}}}\,b. \end{aligned}$$
(3.18)
Substituting (3.18) into (3.4) with (2.5) and (3.1) we obtain the solution of model (1.2) as,
$$\Theta (x,y,t) = \left\{ \begin{gathered} \left[ { \pm \sqrt { - \frac{{l^{2} \alpha _{1} + lr\alpha _{3} + r^{2} \alpha _{2} + \omega }}{{\alpha _{4} }}} \pm \frac{{b{\mkern 1mu} \sqrt {\frac{{2{\mkern 1mu} (\rho ^{2} \alpha _{2} + \rho {\mkern 1mu} \alpha _{3} + \alpha _{1} )}}{{\alpha _{4} }}} }}{{ \pm b\sqrt { - \frac{{\rho ^{2} \alpha _{2} + \rho {\mkern 1mu} \alpha _{3} + \alpha _{1} }}{{2{\mkern 1mu} l^{2} \alpha _{1} + 2{\mkern 1mu} lr\alpha _{3} + 2{\mkern 1mu} r^{2} \alpha _{2} + 2{\mkern 1mu} \omega }}} + \frac{c}{{{\text{e}}^{{ \pm \sqrt { - \frac{{2{\kern 1pt} l^{2} \alpha _{1} + 2{\kern 1pt} lr\alpha _{3} + 2{\kern 1pt} r^{2} \alpha _{2} + 2{\kern 1pt} \omega }}{{\rho ^{2} \alpha _{2} + \rho {\kern 1pt} \alpha _{3} + \alpha _{1} }}} {\kern 1pt} {\kern 1pt} \alpha }} }}}}} \right]{\mkern 1mu} e^{{i{\kern 1pt} \beta }} ,{\mkern 1mu} {\mkern 1mu} a \ne b, \hfill \\ \sqrt { - \frac{{l^{2} \alpha _{1} + lr\alpha _{3} + r^{2} \alpha _{2} + \omega }}{{\alpha _{4} }}} \left[ { \pm 1 \pm \frac{{1 - {\text{tanh}}\left( { \pm \frac{1}{2}{\mkern 1mu} \sqrt { - \frac{{2{\mkern 1mu} l^{2} \alpha _{1} + 2{\mkern 1mu} lr\alpha _{3} + 2{\mkern 1mu} r^{2} \alpha _{2} + 2{\mkern 1mu} \omega }}{{\rho ^{2} \alpha _{2} + \rho {\mkern 1mu} \alpha _{3} + \alpha _{1} }}} {\mkern 1mu} {\mkern 1mu} \alpha } \right)}}{{(c - 1) + (c + 1){\mkern 1mu} {\text{tanh}}\left( { \pm \frac{1}{2}{\mkern 1mu} \sqrt { - \frac{{2{\mkern 1mu} l^{2} \alpha _{1} + 2{\mkern 1mu} lr\alpha _{3} + 2{\mkern 1mu} r^{2} \alpha _{2} + 2{\mkern 1mu} \omega }}{{\rho ^{2} \alpha _{2} + \rho {\mkern 1mu} \alpha _{3} + \alpha _{1} }}} {\mkern 1mu} {\mkern 1mu} \alpha } \right)}}} \right]{\mkern 1mu} e^{{i{\kern 1pt} \beta }} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} a = b, \hfill \\ \end{gathered} \right.$$
(3.19)
where \(\alpha =x+\rho \,y-\sigma \,t+\alpha _{0}\) and \(\beta =l\,x+r\,y+\omega \,t\).
Case 2 If we take \(K=2\), then \(S=3\). Thus (2.3) and (2.4) take the same form that we obtained in (3.8) and (3.9), respectively. Setting (3.8) into (3.17) and using (3.9), we get a polynomial in \(W(\alpha )\). Putting all coefficients of it equal to zero and with the aid of Maple, we get
$$\begin{aligned} a=\pm \frac{1}{2}\sqrt{-{\frac{2\,({l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2}\alpha _{{2 }}+\omega )}{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{ {1}}}}},\,d_{{0}}=\pm \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2} \alpha _{{2}}+\omega }{\alpha _{{4}}}}},\,d_{{1}}=0, \end{aligned}$$
$$\begin{aligned} \,d_{{2}}=\pm 2\,\sqrt{{\frac{2\,({\rho }^{2}\alpha _{{2}}+\alpha _{{1}} +\rho \,\alpha _{{3}})}{\alpha _{{4}}}}}\,b. \end{aligned}$$
(3.20)
Putting (3.20) into (3.8) with (2.5) and (3.1) we obtain the solution of model (1.2) as,
$$\begin{aligned} \Theta (x,y,t)=\left\{ \begin{array}{l}\left [\pm \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _ {{3}}+{r}^{2}\alpha _{{2}}+\omega }{\alpha _{{4}}}}}\pm \frac{2\,b\,\sqrt{{ \frac{2\,({\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}})}{\alpha _ {{4}}}}}}{ \pm 2\,b\sqrt{-{\frac{{\rho }^{2}\alpha _{{2}}+\rho \, \alpha _{{3}}+\alpha _{{1}}}{2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2 \,{r}^{2}\alpha _{{2}}+2\,\omega }}}+\frac{c}{ {\textrm{e}^{\pm \sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha }} } } \right ]\,e^{i\,\beta },\,a\ne b, \\ \\ \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _ {{3}}+{r}^{2}\alpha _{{2}}+\omega }{\alpha _{{4}}}}}\,\left [\pm 1\pm \frac{1-\hbox {tanh}(\pm \frac{1}{2}\,{{\sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha } })}{(c-1)+(c+1)\,\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha })}\right ]\,\,e^{i\,\beta },\,\,\,\,\,a= b. \end{array}\right. \end{aligned}$$
(3.21)
Case 3 If we let \(K=3\), then \(S=4\). So (2.3) and (2.4) become the same equations (3.12) and (3.13). Substituting (3.12) into (3.17) and using (3.13), we get a polynomial in \(W(\alpha )\). Setting all coefficients of it equal to zero and with the Maple software, we have
$$\begin{aligned} a=\pm \frac{1}{3}\sqrt{-{\frac{2\,({l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2}\alpha _{{2 }}+\omega )}{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{ {1}}}}},\,d_{{0}}=\pm \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _{{3}}+{r}^{2} \alpha _{{2}}+\omega }{\alpha _{{4}}}}},\,d_{{1}}=d_{{2}}=0, \end{aligned}$$
$$\begin{aligned} \,d_{{3}}=\pm 3\,\sqrt{{\frac{2\,({\rho }^{2}\alpha _{{2}}+\alpha _{{1}} +\rho \,\alpha _{{3}})}{\alpha _{{4}}}}}\,b. \end{aligned}$$
(3.22)
Putting (3.22) into (3.12) with (2.5) and (3.1) we have the solution of model (1.2) as,
$$\begin{aligned} \Theta (x,y,t)=\left\{ \begin{array}{l}\left [\pm \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _ {{3}}+{r}^{2}\alpha _{{2}}+\omega }{\alpha _{{4}}}}}\pm \frac{3\,b\,\sqrt{{ \frac{2\,({\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}})}{\alpha _ {{4}}}}}}{ \pm 3\,b\sqrt{-{\frac{{\rho }^{2}\alpha _{{2}}+\rho \, \alpha _{{3}}+\alpha _{{1}}}{2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2 \,{r}^{2}\alpha _{{2}}+2\,\omega }}}+\frac{c}{ {\textrm{e}^{\pm \sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha }} } } \right ]e^{i\,\beta },a\ne b, \\ \\ \sqrt{-{\frac{{l}^{2}\alpha _{{1}}+lr\alpha _ {{3}}+{r}^{2}\alpha _{{2}}+\omega }{\alpha _{{4}}}}}\,\left [\pm 1\pm \frac{1-\hbox {tanh}(\pm \frac{1}{2}\,{{\sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha } })}{(c-1)+(c+1)\,\hbox {tanh}(\pm \frac{1}{2}\,{\sqrt{-{\frac{ 2\,{l}^{2}\alpha _{{1}}+2\,lr\alpha _{{3}}+2\,{r}^{2}\alpha _{{2}}+2\, \omega }{{\rho }^{2}\alpha _{{2}}+\rho \,\alpha _{{3}}+\alpha _{{1}}}}} \,\,\alpha})}\right ]\,\,e^{i\,\beta },\,\,\,\,\,\,\,a= b. \end{array}\right. \end{aligned}$$
(3.23)
The solutions that we get in Case 1, Case 2 and Case 3 are similar to each others, but with a simple difference in the second term of these solutions at \(a\ne b\). But when \(a= b\) the solutions are the same in all cases.
Here, we discuss the physical interpretations of figures of plotted solutions. Kink types of solitary wave solutions are an important to describe phenomena in many fields of science such as optical fibers, material physics and plasma physics. Some of the obtained solutions of the HNLS and HFSC equations are shown graphically by 3D surface plots with appropriate parametric selections. In Figs. 1, 2, 3 and 4, we plot 3D and 2D graphics of absolute, real and imaginary parts of solutions (3.7), (3.11),(3.21) and (3.23), respectively, which denote the dynamics behavior of solutions. We plot 3D graphics of Figs. 1, 2, 3 and 4 when \(-10<x<10,\, -10<t<10\). The exact solutions and figures obtained in this paper give us the physical interpretation for the two models (1.1) and (1.2).
Figure 1 depicts the physical behavior of solitary wave solution of (3.7) and shows its corresponding 3D and intensity plots, respectively.
Figure 2 shows kink type solitary wave solution of (3.11).
Figure 3 illustrates the solitary wave solution for (3.21).
Figure 4 demonstrates the traveling wave solution of (3.23).

4 Symmetry analysis and group transformation

A Lie symmetry of differential equations is a transformations, that maps one solution to other solution. In this section, we derive the Lie point symmetry, symmetry group and new solutions
corresponding to the symmetry group for two models that given in (1.1) and (1.2).

4.1 Symmetry groups and new solutions of (2+1)-dimensional HNLS equation

First, we consider the transformation
$$\begin{aligned} \Theta (x,y,t)=n(x,y,t)+i\,m(x,y,t). \end{aligned}$$
(4.1)
Substituting (4.1) into (1.1) and splitting the result into real and imaginary parts, we get the following system:
$$\begin{aligned} \begin{array}{l} m_{y}+\frac{1}{2}\,(n_{xx}-n_{tt})-(n^{3}+n\,m^2)=0, \\ n_{y}-\frac{1}{2}\,(m_{xx}-m_{tt})+(m^{3}+m\,n^2)=0. \end{array} \end{aligned}$$
(4.2)
The Lie point symmetries for (4.2) is generated by a vector field in the form
$$\begin{aligned} X=\tau ^{1}(x,y,t,n,m)\partial _{ x}+\tau ^{2}(x,y,t,n,m)\partial _{ y}+\tau ^{3}(x,y,t,n,m)\partial _{ t}+\nu ^{1}(x,y,t,n,m)\partial _{n}+\nu ^{2}(x,y,t,n,m)\partial _{m}. \end{aligned}$$
(4.3)
Appling the prolongation Pr\(^{(2)} X\) to (4.2), we obtain a determined system of linear PDEs. Solving it by Maple, we get the infinitesimals as follows:
$$\begin{gathered} \tau ^{1} = \frac{1}{2}{\mkern 1mu} c_{1} {\mkern 1mu} x + c_{3} {\mkern 1mu} t + c_{5} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \tau ^{2} = c_{1} {\mkern 1mu} y + c_{2} , \hfill \\ \tau ^{3} = \frac{1}{2}{\mkern 1mu} c_{1} {\mkern 1mu} t + c_{3} {\mkern 1mu} x + c_{4} ,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \nu ^{1} = - \frac{1}{2}c_{1} {\mkern 1mu} m,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \nu ^{2} = - \frac{1}{2}{\mkern 1mu} c_{1} {\mkern 1mu} n, \hfill \\ \end{gathered}$$
(4.4)
where \(c_{1},\,c_{2},\,c_{3},\,c_{4}\) and \(c_{5}\) are constants. Substituting (4.4) into (4.3) we admit the algebra of Lie point symmetries generators of Eq. (4.2) as
$$\begin{aligned} \begin{array}{l} X_{1}=\frac{1}{2}\,(x\,\partial _{x} +2\,y\,\partial _ {y}+t\,\partial _{t}-m\,\partial _ {n}-n\,\partial _ {m}), \,X_{2}=\partial _{y}, \,X_{3}=t\,\partial _{x}+x\,\partial _{t},\,X_{4}=\partial _{t},\,X_{5}=\partial _{x}. \end{array} \end{aligned}$$
(4.5)
Group transformations
To get the group transformation \(G_{i}: (x,y,t,n,m)\rightarrow\) \(({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}})\) that is generated by the generator \(X_{i}\) for \(i=1,2,3,4,5\). We want to solve the initial problems of ODEs that given as
$$\begin{gathered} \frac{{d(\hat{x},\hat{y},\hat{t},\hat{n},\hat{m})}}{{d\epsilon }} = (\tau ^{1} ,\tau ^{2} ,\tau ^{3} ,\nu ^{1} ,\nu ^{2} ), \hfill \\ (\hat{x},\hat{y},\hat{t},\hat{n},\hat{m})_{{\epsilon = 0}} = (x,y,t,n,m), \hfill \\ \end{gathered}$$
where \(\tau ^{1}=\tau ^{1}({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}}),\, \tau ^{2}=\tau ^{2}({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}}),\, \tau ^{3}=\tau ^{3}({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}}),\, \nu ^{1}=\nu ^{1}({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}}),\,\nu ^{2} =\nu ^{2}({\hat{x}},{\hat{y}},{\hat{t}},{\hat{n}},{\hat{m}})\) and \(\epsilon\) is a group parameter. Then the one-parameter symmetry groups \(G_{i}\) corresponding to the generators \(X_{i}\) that given in (4.5) can be obtained as
\(G_{1}: (x,y,t,n,m)\rightarrow\) \((x\,e^{\frac{1}{2}\,\epsilon },y\,e^{\epsilon },t\,e^{\frac{1}{2}\,\epsilon },n-\frac{\epsilon }{2}\,m,m-\frac{\epsilon }{2}\,n),\)
\(G_{2}: (x,y,t,n,m)\rightarrow\) \((x,y+\epsilon ,t,n,m),\)
\(G_{3}: (x,y,t,n,m)\rightarrow\) \((x+\epsilon \,t,y,t+\epsilon \,x,n,m),\)
\(G_{4}: (x,y,t,n,m)\rightarrow\) \((x,y,t+\epsilon ,n,m).\)
\(G_{5}: (x,y,t,n,m)\rightarrow\) \((x+\epsilon ,y,t,n,m).\)
New solutions via group transformations
Consider \(n=\lambda (x,y,t)\) and \(m=\mu (x,y,t)\) is a solution of the system in (4.2), by using the one-parameter symmetry groups \(G_{i} (i=1,2,3,4,5)\) that obtained above, we have the following:
$$\begin{gathered} n^{{(1)}} = \lambda \left( {x{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} ,y{\mkern 1mu} e^{{ - \epsilon }} ,t{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} } \right) - \frac{\epsilon }{2}{\mkern 1mu} \mu \left( {x{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} ,y{\mkern 1mu} e^{{ - \epsilon }} ,t{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} } \right), \hfill \\ m^{{(1)}} = \mu \left( {x{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} ,y{\mkern 1mu} e^{{ - \epsilon }} ,t{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} } \right) - \frac{\epsilon }{2}{\mkern 1mu} \lambda \left( {x{\mkern 1mu} e^{{ - \frac{1}{2}\epsilon }} ,y{\mkern 1mu} e^{{ - \epsilon }} ,t{\mkern 1mu} e^{{ - \frac{1}{2}{\kern 1pt} \epsilon }} } \right). \hfill \\ n^{{(2)}} = \lambda (x,y - \epsilon ,t), \hfill \\ m^{{(2)}} = \mu (x,y - \epsilon ,t). \hfill \\ n^{{(3)}} = \lambda (x - \epsilon {\mkern 1mu} t,y,t - \epsilon {\mkern 1mu} x),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} m^{{(3)}} = \mu (x - \epsilon {\mkern 1mu} t,y,t - \epsilon {\mkern 1mu} x). \hfill \\ n^{{(4)}} = \lambda (x,y,t - \epsilon ),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} m^{{(4)}} = \mu (x,y,t - \epsilon ). \hfill \\ n^{{(5)}} = \lambda (x - \epsilon ,y,t),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} m^{{(5)}} = \mu (x - \epsilon ,y,t). \hfill \\ \end{gathered}$$
Substituting the above values for n and m into equation (4.1), we get new solutions of the model (1.1).
Exact solutions by reduction
To illustrate the exact solutions by similarity reduction of model (1.1), we give the following example:
Using the generator \(X_{2}=\partial _{y}\) that given in (4.5) and applying the characteristic equation which is equivalent to solve the invariant surface condition, we get the similarity solutions and the similarity variable as
$$\begin{aligned} n=f(\delta _{1},\delta _{2}),\,\,\,\,m=g(\delta _{1},\delta _{2}),\,\,\,\,\,\delta _{1}=x,\,\,\,\,\delta _{2}=t. \end{aligned}$$
Substituting these solutions into Eq. (4.2), we have the reduced equations as,
$$\begin{aligned} f_{\delta _{1}\delta _{1}}-f_{\delta _{2}\delta _{2}}-2\,f\,(f^{2}+g^2)=0,\,\,\,\,\,\,\, -g_{\delta _{1}\delta _{1}}+g_{\delta _{2}\delta _{2}}+2\,g\,(f^2+g^{2})=0. \end{aligned}$$
The solutions of this system can be studied by using one of the methods given in Zhou et al. (2003); Kudryashov (2012); Malik et al. (2023); Shehata (2010). Therefore, we can construct the exact solutions of model (1.1).

4.2 Symmetry groups and new solutions of (2+1)-dimensional HFSC equation

Substituting (4.1) into (1.2) and splitting the result into real and imaginary parts, we get the following system
$$\begin{aligned} \begin{array}{l} m_{t}-\alpha _{1}\,n_{xx}-\alpha _{2}\,n_{yy}-\alpha _{3}\,n_{xy}+\alpha _{4}\,(n^{3}+n\,m^2)=0, \\ n_{t}+\alpha _{1}\,m_{xx}+\alpha _{2}\,m_{yy}+\alpha _{3}\,m_{xy}-\alpha _{4}\,(m^{3}+m\,n^2)=0. \end{array} \end{aligned}$$
(4.6)
Appling the prolongation Pr\(^{(2)} X\) to (4.6), we obtain a determined system of linear PDEs. Solving it by Maple, we get the infinitesmals as follows:
$$\begin{aligned} \begin{array}{l} \tau ^{1}=(c_{1}-c_{3})\,x+\frac{\alpha _{1}}{\alpha _{3}}\,(-c_{1}+2\,c_{3})\,y+c_{5},\,\,\,\tau ^{2}=c_{3}\,y+\frac{\alpha _{2}}{\alpha _{3}}\,(c_{1}-2\,c_{3})\,x+c_{4},\,\,\,\tau ^{3}=c_{1}\,t+c_{2},\,\,\, \\ \nu ^{1}=-\frac{1}{2}c_{1}\,m,\,\,\,\nu ^{2}=-\frac{1}{2}\,c_{1}\,n. \end{array} \end{aligned}$$
(4.7)
Setting (4.7) into (4.3) Eq. (4.6) admits the algebra of Lie point symmetries generators as
$$\begin{aligned} \begin{array}{l} X_{1}=(x-\frac{\alpha _{1}}{\alpha _{3}}\,y)\,\partial _{x} +\frac{\alpha _{2}}{\alpha _{3}}\,x\,\partial _ {y}+t\,\partial _{t}-\frac{1}{2}\,m\,\partial _ {n}-\frac{1}{2}\,n\,\partial _ {m}), \,\,\,X_{2}=\partial _{t}, \\ \,X_{3}=(-x+\frac{2\,\alpha _{1}}{\alpha _{3}}\,y)\,\partial _{x}+(y-\frac{2\,\alpha _{2}}{\alpha _{3}}\,x)\,\partial _{y},\,\,\,X_{4}=\partial _{y},\,\,\,X_{5}=\partial _{x}. \end{array} \end{aligned}$$
(4.8)
Group transformations
The one-parameter symmetry groups \(G_{i}\) corresponding to the generators \(X_{i}\) that given in (4.8) can be obtained as follows: \(G_{1}: (x,y,t,n,m)\rightarrow\) \(\big (\frac{(\alpha _{3}^{2}-\alpha _{1}\,\alpha _{2}\,\epsilon )}{\alpha _{3}^{2}}\,[\,x\,(1+\epsilon )-\frac{\alpha _{1}\,\epsilon y}{\alpha _{3}}],\frac{(\alpha _{3}^{2}-\alpha _{1}\,\alpha _{2}\,\epsilon )}{\alpha _{3}^{2}}\,[\,\frac{\alpha _{2}\,\epsilon }{\alpha _{3}} (1+\epsilon )(x-\frac{\alpha _{1} }{\alpha _{3}}\,y)-y],te^{\epsilon },n-\frac{m\epsilon }{2},m-\frac{n\epsilon }{2}\big ),\)
\(G_{2}: (x,y,t,n,m)\rightarrow\) \((x,y,t+\epsilon ,n,m),\)
\(G_{3}: (x,y,t,n,m)\rightarrow\) \(\big (x\,(1+\epsilon )+\frac{4\alpha _{1}\alpha _{3}\epsilon }{\alpha _{3}^{2}-4\alpha _{1}\alpha _{2}}\,y,y\,(1+\epsilon )+\frac{8\alpha _{1}\alpha _{2}\epsilon }{\alpha _{3}^{2}-4\alpha _{1}\alpha _{2}}\,y,t,n,m\big ),\)
\(G_{4}: (x,y,t,n,m)\rightarrow\) \((x,y+\epsilon ,t,n,m),\)
\(G_{5}: (x,y,t,n,m)\rightarrow\) \((x+\epsilon ,y,t,n,m).\)
New solutions via group transformations
Consider \(n=\lambda (x,y,t)\) and \(m=\mu (x,y,t)\) is a solution of the system in (4.6), by using the one-parameter symmetry groups \(G_{i} (i=1,2,3,4,5)\), we obtain
$$\begin{aligned}{} & {} n^{(1)}=\lambda \big (\frac{\alpha _{3}^2[\alpha _{1}\epsilon y+(\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )\,x)]}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},\frac{\alpha _{3}^3(\alpha _{3}y-\alpha _{2}x)}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},t\,e^{-\epsilon }\big )\\{} & {} -\frac{\epsilon }{2}\,\mu \big (\frac{\alpha _{3}^2[\alpha _{1}\epsilon y+(\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )\,x)]}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},\frac{\alpha _{3}^3(\alpha _{3}y-\alpha _{2}x)}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},t\,e^{-\epsilon }\big ), \\{} & {} m^{(1)}=\mu \big (\frac{\alpha _{3}^2[\alpha _{1}\epsilon y+(\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )\,x)]}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},\frac{\alpha _{3}^3(\alpha _{3}y-\alpha _{2}x)}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},t\,e^{-\epsilon }\big )\\{} & {} -\frac{\epsilon }{2}\,\lambda \big (\frac{\alpha _{3}^2[\alpha _{1}\epsilon y+(\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )\,x)]}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},\frac{\alpha _{3}^3(\alpha _{3}y-\alpha _{2}x)}{(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )[\alpha _{1}{\alpha _{2}}-(\alpha _{3}^2-\alpha _{1}\alpha _{2}\epsilon )]},t\,e^{-\epsilon }\big ).\\{} & {} n^{(2)}=\lambda (x,y,t-\epsilon ),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, m^{(2)}=\mu (x,y,t-\epsilon ). \\{} & {} n^{(3)}=\lambda \big (\frac{x}{1+\epsilon }-\frac{4\alpha _{1}\alpha _{3}\epsilon y}{\alpha _{3}^2(1+\epsilon )^2-4\alpha _{1}\alpha _{2}},\frac{\alpha _{3}^2-4\alpha _{1}\alpha _{2} }{\alpha _{3}^2(1+\epsilon )-2\alpha _{1}\alpha _{2}(2-\epsilon )}\,y,t\big ), \\{} & {} m^{(3)}=\mu \big (\frac{x}{1+\epsilon }-\frac{4\alpha _{1}\alpha _{3}\epsilon y}{\alpha _{3}^2(1+\epsilon )^2-4\alpha _{1}\alpha _{2}},\frac{\alpha _{3}^2-4\alpha _{1}\alpha _{2} }{\alpha _{3}^2(1+\epsilon )-2\alpha _{1}\alpha _{2}(2-\epsilon )}\,y,t\big ).\\{} & {} n^{(4)}=\lambda (x,y-\epsilon ,t),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m^{(4)}=\mu (x,y-\epsilon ,t).\\{} & {} n^{(5)}=\lambda (x-\epsilon ,y,t),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m^{(5)}=\mu (x-\epsilon ,y,t). \end{aligned}$$
Putting the above values for n and m into Eq. (4.1), we get novel solutions of the model (1.2).

5 Conservation laws via multiplier approach

In this section, we will mention the multiplier method (Naz 2012) and then we using it to obtain the conservation laws for models (1.1) and (1.2). Firstly, suppose that a Nth-order system of PDEs of \(\gamma\) dependent variables \(u=(u^{1},u^{2},\ldots ,u^{\gamma })\) and \(\nu\) independent variables \(x=(x^{1},x^{2},\ldots ,x^{\nu })\), define as
$$\begin{aligned} \Gamma _{\eta }(x,u,u_{(1)},\ldots ,u_{(N)})=0, \,\,\eta =1,2,\ldots ,\gamma , \end{aligned}$$
(5.1)
where, \(u_{(1)},u_{(2)},\ldots ,u_{(N)}\) denote the collections of all first, second,...,Nth-order partial derivatives. Also, consider a vector \(C = (C^{1}, C^{2},\ldots ,C^{\nu })\), is said to be a conserved vector of system (5.1) if \(D_{i}(C^{i}) = 0\) for every solution of system (5.1). Now, we will summary the multiplier method in the following steps:
Step 1 Consider the multiplier of the form \(M^{\eta } = M^{\eta }(x,u,u_{(1)},\ldots ,u_{(\nu )})\) \(=0, \nu \le N\) for obtaining the conserved vectors of system (5.1). These vectors satisfy the condition
$$\begin{aligned} D_{i}\,C^{i}=M^{\eta }\,\Gamma _{\eta }. \end{aligned}$$
(5.2)
where
$$\begin{aligned} D_{i}=\frac{\partial }{\partial x^{i}}+u_{i}^{\eta }\,\frac{\partial }{\partial u^{\eta }}+u_{ij}^{\eta }\,\frac{\partial }{\partial u_{j}^{\eta }}+..., \,\,\,i=1,2,\ldots ,\nu , \end{aligned}$$
(5.3)
is the total derivative operator with respect to \(x^{i}\).
Step 2 Using variational derivative of (5.2) that given as
$$\begin{aligned} \frac{\delta }{\delta u^{\eta }}(M^{\eta }\,\Gamma _{\eta })=0. \end{aligned}$$
(5.4)
to obtain the determining system of equations and \(\frac{\delta }{\delta u^{\eta }}\) is the Euler operator that define as follows:
$$\begin{aligned} \frac{\delta }{\delta u^{\eta }}=\frac{\partial }{\partial u^{\eta }}-D_{i}\,\frac{\partial }{\partial u_{i}^{\eta }}+D_{i}\,D_{j}\,\frac{\partial }{\partial u_{ij}^{\eta }}-..., \end{aligned}$$
(5.5)
Step 3 Solving the determining system of equations that we obtain from (5.4) by Maple, we yields the required multipliers.
Step 4 Substituting the multipliers that we obtained in (5.2), we construct the conservation laws for the system (5.1).

5.1 Conservation laws of (2+1)-dimensional HNLS equation

To calculate the conservation laws for (1.1), we consider multipliers for (4.2) in the form \(M^{1}(t,x,y,n,m,n_{t},m_{t},n_{x},m_{x},n_{y},m_{y}), M^{2}(t,x,y,n,m,n_{t},m_{t},n_{x},m_{x},n_{y},m_{y})\) and applying (5.4), we have
$$\begin{aligned} \begin{array}{l} \frac{\delta }{\delta n}\,[M^{1}\,\Gamma _{1}+M^{2}\,\Gamma _{2}]=0, \\ \frac{\delta }{\delta m}\,[M^{1}\,\Gamma _{1}+M^{2}\,\Gamma _{2}]=0, \end{array} \end{aligned}$$
(5.6)
where, \(\frac{\delta }{\delta n}\) and \(\frac{\delta }{\delta m}\) are the standard Euler operators which we can obtain from (5.3) with (5.5). Expanding (5.6) and separating the different combinations of derivatives of n and m, we have system of equations for \(M^{1}\) and \(M^{2}\). Solving it by Maple software, we get
$$\begin{aligned} \begin{array}{l} M^{1}= -\left[ \left( t\,{ n_{t}}+x\,{ n_x}+n \right) y+{y}^{2}\,{ n_y}-\frac{1}{2} \, \left( {x}^{2}-{t}^{2} \right) m \right] { c_{1}} -\left( t\, { n_t}+x\,{ n_x}+2\,y\,{ n_y}+n \right) { c_{2}} \\ +\left( xm-y\,{ n_x}\right) { c_{3}}+\left( y\,{ n_t} +tm \right) { c_{4}}+m{ c_{5}}- \left( x{ n_t}+t{ n_x} \right) { c_{6}}-{ n_x}\,{ c_{7}}-{ n_t}\,{ c_{8}}-{ n_y}\,{ c_{9}},\\ M^{2}=\left[ \left( t\,{ m_t}+x\,{ m_x}+m \right) y+{y}^{2}{ m_y}-\frac{1}{2} \, \left( {t}^{2}-{x}^{2} \right) n \right] { c_{1}} + \left( t\,{ m_t}+x\,{ m_x}+2\,y\,{ m_y}+m \right) { c_{2}} \\ +\left( y\,{ m_x}+xn \right) { c_{3}}+ \left( tn -y\,{ m_t} \right) { c_{4}}+n{ c_{5}}+ \left( x{ m_t}+t{ m_x} \right) { c_{6}}+{ m_x}\,{ c_{7}}+{ m_t}\,{ c_{8}}+{ m_y}\,{ c_{9}}. \end{array} \end{aligned}$$
(5.7)
From (5.2) and (5.7), we get the following conserved vectors:
Case 1 When \(M^{1}=-\left( t\,{ n_{t}}+x\,{ n_x}+n \right) y-{y}^{2}\,{ n_y}+\frac{1}{2} \, \left( {x}^{2}-{t}^{2} \right) m\) and \(M^{2}=\left( t\,{ m_t}+x\,{ m_x}+m \right) y+{y}^{2}{} { m_y}-\frac{1}{2} \, \left( {t}^{2}-{x}^{2} \right) n\), then we get
$$\begin{aligned} \begin{array}{l} C^{x}=[ -\frac{1}{4}\,{m_{{t}}}^{2}x-3\,{n}^{3}n_{{t}}t x-\frac{1}{2}\,n_{{x}}n_{{t}}t-\frac{1}{2}\,n_{{x}}n-\frac{1}{4}\,{n_{{x}}}^{2}x-\frac{1}{4}\,{n_{{t}} }^{2}x+\frac{1}{4}\,x{m}^{4}-\frac{1}{2}\,m_{{x}}m-\frac{1}{4}\,{m_{{x}}}^{2}x \\ +n_{{y}}xm+\frac{1}{2}\, x{n}^{2}{m}^{2}-\frac{1}{2}\,m_{{x}}m_{{t}}t] y+ \left( -\frac{1}{2}\,m_{{y}}m_{{x}}-\frac{1}{2}\,n_{{x}}n_{{y}}+n_{{y}}x{n}^{3} \right) {y}^{2}-\frac{1}{4}\,m_{{x}}n{x}^{2}+\frac{1}{6}\,n_{{y}}n{x}^{3} \\ -\frac{1}{2}\,n_{{y}}xn{t}^{2}-\frac{1}{4}\,n_{{x}}m{t}^{2}+\frac{1}{2}\,mnx +\frac{1}{4}\,n_{{x}}m{x}^{2}+\frac{1}{4}\,m_{{x}}n{t}^{2}, \\ C^{y}=\left( \frac{1}{4}\,{m_{{x}}}^{2}+\frac{1}{4}\,{m}^{4}-\frac{1}{4}\,{m_{{t}}}^{2}-{n}^{3}n_{ {x}}x-\frac{1}{4}\,{n_{{t}}}^{2}+\frac{1}{2}\,{n}^{2}{m}^{2}+\frac{1}{4}\,{n_{{x}}}^{2} \right) {y}^{2}- \left( mtn_{{t}}+mxn_{{x}}+mn \right) y \\ -\frac{1}{4}\,{t}^{2 }{m}^{2}+\frac{1}{4}\,{x}^{2}{m}^{2}+\frac{1}{2}\,nn_{{x}}{t}^{2}x-\frac{1}{6}\,n_{{x}}n{x}^{3 }, \\ C^{t}=\left( \frac{1}{2}\,n_{{y}}n_{{t}}+\frac{1}{2}\,m_{{y}}m_{{t}} \right) {y}^{2}+[ 3\,{n}^{3}n_{{x}}tx+{n}^{4}t+\frac{1}{2}\,n_{{t}}n+\frac{1}{4}\,{m}^{4}t+\frac{1}{4}\, {m_{{t}}}^{2}t+\frac{1}{4}\,m_{{x}}t+\frac{1}{4}\,{n_{{x}}}^{2}t+\frac{1}{2}\,m_{{t}}m \\ +\frac{1}{4}\,{n _{{t}}}^{2}t+n_{{y}}mt+\frac{1}{2}\,m_{{x}}m_{{t}}x+\frac{1}{2}\,{m}^{2}{n}^{2}t+\frac{1}{2}\, n_{{t}}n_{{x}}x ] y +\frac{1}{2}\,mnt+\frac{1}{4}\,n_{{t}}m{t}^{2}-\frac{1}{4}\,n_{{t}}m{ x}^{2}+\frac{1}{4}\,m_{{t}}n{x}^{2}-\frac{1}{4}\,m_{{t}}n{t}^{2}. \end{array} \end{aligned}$$
(5.8)
Case 2 When \(M^{1}=-\left( t\, { n_t}+x\,{ n_x}+2\,y\,{ n_y}+n \right)\) and \(M^{2}=\left( t\,{ m_t}+x\,{ m_x}+2\,y\,{ m_y}+m \right)\), thus we have
$$\begin{aligned} \begin{array}{l} C^{x}= \frac{1}{4} \,\left( {m}^{4}-{{ m_t}}^{2}-12\,{n}^{3}{ n_t}\,t-{ { m_x}}^{2}-{{ n_t}}^{2}+4\,{ n_y}\,m+2\,{m}^{2}{n}^{2}+8\,{ n_y}\,y{n}^{3}-{{ n_x}}^{2} \right) x- \left( { m_y}\,{ m_x}+{ n_x}\,{ n_y} \right) y- \\ \frac{1}{2}\,({ n_x}\,n+{ n_x}\,{ n_t}\,t+\,{ m_x}\,{ m_t}\,t+{ m_x}\,m), \\ C^{y}=\left( -2\,{n}^{3}{} { n_x}\,y-m{ n_x} \right) x+ \frac{1}{2} \,\left( -{{ n_t}}^{2} +{{ m_x}}^{2}-{{ m_t}}^{2}+{m}^{4}+ \,{{ n_x}}^{2}+2\,{m}^{2}{n}^{2} \right) y-tm{ n_t}-nm, \\ C^{t}= \frac{1}{4}\,({m}^{4}t+{{ m_t}}^{2}t+2\,{ m_t}\,m+2\,{m} ^{2}{n}^{2}t+2\,{ n_t}\,n+{{ m_x}}^{2}t+{{ n_x}}^{2} t+{{ n_t}}^{2}t)+{n}^{4}t+{ n_y}\,mt \\ +\frac{1}{2}\,\left( 6\,{n}^{3}{ n_x}\,t +{ n_t}\,{ n_x}+{ m_x}\,{ m_t} \right) x+ \left( { m_y}\,{ m_t}+{ n_y}\,{ n_t} \right) y. \end{array} \end{aligned}$$
(5.9)
Case 3 If \(M^{1}=mx-{ n_x}\,y\) and \(M^{2}={ m_x}\,y+nx\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}= \frac{1}{4}\left( - {{ m_x}}^{2}-{{ n_t}}^{2}-{{ m_t}}^{2}+2\,{n}^{2}{m}^{2}-4\,{n}^{3}{} { n_t}\,t-{{ n_x}}^{2 }+4\,{ n_y}\,m+{m}^{4} \right) y \\ + \frac{1}{2}\,({ n_y}\,n{x}^{2}+nm)- \frac{1}{2} \left( { m_x}\,n-m{ n_x} \right) x, \\ C^{y}= \frac{1}{2}\,(x{m}^{2}-{ n_x}\,n{x}^{2})-m{ n_x}\,y, \\ C^{t}=\frac{1}{2}\,\bigg [ \left( -{ n_t}\,m+{ m_t}\,n \right) x+ \left( { n_x}\,{ n_t}+{ m_x}\,{ m_t}+2\,{n}^{3}{ n_x}\,t \right) y\bigg ]. \end{array} \end{aligned}$$
(5.10)
Case 4 When \(M^{1}={ n_t}\,y+mt\) and \(M^{2}=-{ m_t}\,y+nt\), we obtain
$$\begin{aligned} \begin{array}{l} C^{x}= \frac{1}{2}\,\bigg [\left( 2\,{ n_y}\,xn+{ n_x}\,m+{ m_x}\,n \right) t+ \left( { n_x}\,{ n_t}+{ m_x}\,{ m_t} \right) y \bigg ],\,\,\,\, C^{y}=-n{ n_x}\,tx+m{ n_t}\,y+ \frac{1}{2}\,t{m}^{2}, \\ C^{t}= \frac{1}{2}\,(\left( m{ n_t}+{ m_t}\,n \right) t-n\,m)- \frac{1}{4}\,\left( 2\,{m}^{2}{n}^{2}+4\,{ n_y}\,m+{m}^{4}+{n}^{4}+{{ m_x}}^{2}+{{ n_t}}^{2}+{{ m_t}}^{2}+{{ n_x}}^{2} \right) y.\end{array} \end{aligned}$$
(5.11)
Case 5 When \(M^{1}=m\) and \(M^{2}=n\), thus we have
$$\begin{aligned} \begin{array}{l} C^{x}= \frac{1}{2}\,(-{ m_x}\,n+{ n_x}\,m+2\,{ n_y}\,xn), \\ C^{y}= \frac{1}{2}\,{m}^{2}-n{ n_x}\,x, \\ C^{t}= \frac{1}{2}\,({ m_t}\,n-{ n_t}\,m). \end{array} \end{aligned}$$
(5.12)
Case 6 If \(M^{1}=-{ n_t}\,x-{ n_x}\,t\) and \(M^{2}={ m_t}\,x+{ m_x}\,t\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}= -\frac{1}{2}\,{ n_t}\,{n}^{3}{t}^{2}+ \frac{1}{4} \left( 4\,{ n_y}\,m+2\,{m}^{2}{n}^{2} -{{ n_x}}^{2}-{{ n_t}}^{2}-{{ m_t}}^{2}-{{ m_x}}^{2}+{m}^{4} \right) t- \frac{1}{2}\,\left( { n_t}\,{ n_x}+{ m_x}\,{ m_t} \right) x, \\ C^{y}= -m{ n_t}\,x-m{ n_x}\,t, \\ C^{t}= \frac{1}{2}\,{ n_x}\,{n}^{3}{t}^{2}+\frac{1}{2} \left( { m_x}\,{ m_t}+{ n_t}\,{ n_x} \right) t+\frac{1}{4}\, \left( 2\,{m}^{2}{n}^{2}+{n}^{4}+{{ n_t}}^{2}+{{ m_t}}^{2}+{{ m_x}}^{2}+{m}^{4 }+{{ n_x}}^{2}+4\,{ n_y}\,m \right) x. \end{array} \end{aligned}$$
(5.13)
Case 7 If \(M^{1}=-{ n_x}\) and \(M^{2}={ m_x}\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}=m{ n_y} -{n}^{3}{} { n_t}\,t+\frac{1}{4}\,({m}^{4}-{{ m_x}}^{2}-{{ n_x}}^{2}-{{ m_t}}^{2}-{{ n_t}}^{2}+2\,{m}^{2}{n}^{ 2}), \\ C^{y}= -{ n_x}\,m,\,\,\,\,\,\, C^{t}=\frac{1}{2}\,({ m_t}\,{ m_x}+{ n_t}\,{ n_x})+{n}^{3}{} { n_x}\,t.\end{array} \end{aligned}$$
(5.14)
Case 8 At \(M^{1}=-{ n_t}\) and \(M^{2}={ m_t}\), we get
$$\begin{aligned} \begin{array}{l} C^{x}= -\frac{1}{2}\,({ m_t}\,{ m_x}+{ n_t}\,{ n_x}),\,\,\,\,\,\,\, C^{y}= -{ n_t}\,m, \\ C^{t}=m{ n_y}+\frac{1}{4}\,({n}^{4}+{m}^{4}+{{ m_x}}^{2}+{{ n_x} }^{2}+{{ m_t}}^{2}+{{ n_t}}^{2}+2\,{m}^{2}{n}^{2}). \end{array} \end{aligned}$$
(5.15)
Case 9 If \(M^{1}=-{ n_y}\) and \(M^{2}={ m_y}\), then we obtain
$$\begin{aligned} \begin{array}{l} C^{x}=-\frac{1}{2}\,({ n_y}\,{ n_x}+{ m_y}\,{ m_x})+{ n_y}\,x{n}^{3}, \\ C^{y}= \frac{1}{4}\,({m}^{4}+{{ m_x}}^{2}+{{ n_x}}^{2}-{{ m_t}}^{ 2}-{{ n_t}}^{2}-4\,{n}^{3}{ n_x}\,x+2\,{m}^{2}{n}^{2}), \\ C^{t}=\frac{1}{2}\,({ m_t}\,{ m_y}+{ n_t}\,{ n_y}). \end{array} \end{aligned}$$
(5.16)

5.2 Conservation laws of (2+1)-dimensional HFSC equation

To calculate the conservation laws for (1.2), we consider multipliers for (4.6) in the same form for (4.2) and by the same steps, we get
$$\begin{aligned} \begin{array}{l} M^{1}= \left[ \left( t\, { n_t}+x\,{ n_x}+y\,{ n_y}+n \right) \,t +\frac{\left( \alpha _{1}\, {y}^{2}+\alpha _{2}\, {x}^{2}- \alpha _{3}\,x\,y\right) \, m}{(4\,\alpha _{1}\,\alpha _{2}-\alpha _{3}^{2})} \right] { c_{1}}+ \left( 2\,t\, { n_t}+x\,{ n_x}+2\,y\,{ n_y}+n \right) { c_{2}} \\ - \left( 2\,\alpha _{1}\,t\, { n_x}+\alpha _{3}\,t\, { n_y}+m\,x \right) { c_{3}}- \left( 2\,\alpha _{2}\,t\, { n_y}+\alpha _{3}\,t\, { n_x}+m\,y \right) { c_{4}}-m{ c_{5}}+ \\ \left( 2\,\alpha _{1}\,y\, { n_x}-2\,\alpha _{2}\,x\, { n_y}-\alpha _{3}\,(x\, { n_x}-y\, { n_y}) \right) { c_{6}}+{ n_x}\,{ c_{7}}+{ n_t}\,{ c_{8}}+{ n_y}\,{ c_{9}},\\ \\ M^{2}= \left[ \left( t\, { m_t}+x\,{ m_x}+y\,{ m_y}+m \right) \,t -\frac{\left( \alpha _{1}\, {y}^{2}+\alpha _{2}\, {x}^{2}- \alpha _{3}\,x\,y\right) \, n}{(4\,\alpha _{1}\,\alpha _{2}-\alpha _{3}^{2})} \right] { c_{1}} + \left( 2\,t\,{ m_t}+x\,{ m_x}+y\,{ m_y}+m \right) { c_{2}} \\ -\left( 2\,\alpha _{1}\,t\, { m_x}+\alpha _{3}\,t\, { m_y}-n\,x \right) { c_{3}}- \left( 2\,\alpha _{2}\,t\, { m_y}+\alpha _{3}\,t\, { m_x}-n\,y \right) { c_{4}}+n{ c_{5}}+ \\ \left( 2\,\alpha _{1}\,y\, { m_x}-2\,\alpha _{2}\,x\, { m_y}-\alpha _{3}\,(x\, { m_x}-y\, { m_y}) \right) { c_{6}}+{ m_x}\,{ c_{7}}+{ m_t}\,{ c_{8}}+{ m_y}\,{ c_{9}}. \end{array} \end{aligned}$$
(5.17)
From (5.2) and (5.17), we construct the conserved vectors of Eq. (1.2) as
Case 1 When \(M^{1}= \left( t\, { n_t}+x\,{ n_x}+y\,{ n_y}+n \right) \,t +\frac{\left( \alpha _{1}\, {y}^{2}+\alpha _{2}\, {x}^{2}- \alpha _{3}\,x\,y\right) \, m}{(4\,\alpha _{1}\,\alpha _{2}-\alpha _{3}^{2})}\) and
\(M^{2}= \left( t\, { m_t}+x\,{ m_x}+y\,{ m_y}+m \right) \,t -\frac{\left( \alpha _{1}\, {y}^{2}+\alpha _{2}\, {x}^{2}- \alpha _{3}\,x\,y\right) \, n}{(4\,\alpha _{1}\,\alpha _{2}-\alpha _{3}^{2})}\), then we get
$$\begin{aligned} \begin{array}{l} C^{x}=\frac{1}{4}\,\bigg [( 4\,{ m_t}\,{ m_x}\,{t}^{2}+2\,{{ m_x}}^{2}tx+4\, { m_x}\,{ m_y}\,ty+4\,{ n_t}\,{ n_x}\,{t}^{2}+2\,{{ n_x}}^{2 }tx+4\,{ n_x}\,{ n_y}\,ty+4\,m{ m_x}\,t+4\,n{ n_x}\,t ) \alpha _{{1}}+ \\ \left( -2\,{{ m_y}}^{2}tx-2\,{{ n_y}}^{2}tx \right) \alpha _{{2}}+ \left( 2\,{ m_t}\,{ m_y}\,{t}^{2}+2\,{{ m_y}}^{2}t y+2\,{ n_t}\,{ n_y}\,{t}^{2}+2\,{{ n_y}}^{2}ty+4\,m{ m_y}\,t+4 \,n{ n_y}\,t \right) \alpha _{{3}}+ \\ \left( 4\,{n}^{3}{} { n_t}\,{t}^{2 }x-4\,{n}^{3}{ n_y}\,txy-{m}^{4}tx-2\,{m}^{2}{n}^{2}tx \right) \alpha _{{4}}+4\,m{ n_t}\,tx+\frac{1}{4\,\alpha _{{1}}\alpha _{{2}}-{\alpha _{{3}}}^{2}}\,\bigg ( \left( 4\,m{ n_x}\,{y}^{2}-4\,{ m_x }\,n{y}^{2} \right) {\alpha _{{1}}}^{2}+ \\ \left( \left( 4\,m{ n_x}\,{ x}^{2}-4\,{ m_x}\,n{x}^{2}+8\,mnx \right) \alpha _{{2}}+ \left( -4\,m { n_x}\,xy+4\,{ m_x}\,nxy-4\,{ m_y}\,n{y}^{2}-4\,mny \right) \alpha _{{3}} \right) \alpha _{{1}} \\ -4\,\alpha _{{2}}\alpha _{{3}}{} { m_y} \,n{x}^{2}+4\,{\alpha _{{3}}}^{2}{} { m_y}\,nxy\bigg )\bigg ], \\ \\ C^{y}=\frac{-1}{4}[\left( 2\,{{ m_x}}^{2}ty+2\,{{ n_x}}^{2}ty \right) \alpha _{{1}}+ ( -4\,{ m_t}\,{ m_y}\,{t}^{2}-4\,{ m_x}\,{ m_y}\, tx-2\,{{ m_y}}^{2}ty-4\,{ n_t}\,{ n_y}\,{t}^{2}-4\,{ n_x}\,{ n_y}\,tx \\ -2\,{{ n_y}}^{2}ty -4\,m{ m_y}\,t-4\,n{ n_y}\,t ) \alpha _{{2}}+ \left( -2\,{ m_t}\,{ m_x}\,{t}^{2}-2\,{{ m_x}}^{2}tx-2\,{ n_t}\,{ n_x}\,{t}^{2}-2\,{{ n_x}}^{2}tx \right) \alpha _{{3}}+ ( -4\,{n}^{3}{} { n_x}\,txy \\ +4\,{m}^{4}ty +2 \,{m}^{2}{n}^{2}ty) \alpha _{{4}}-4\,m{ n_t}\,ty]+\frac{1}{4\,\alpha _{{1}}\alpha _{{2}}-{\alpha _{{3}}}^{2}}\, ( \alpha _{{1}}\alpha _{{2}} \left( m{ n_y}\,{y}^{2}-{ m_y}\,n{y}^{2}+ 2\,mny \right) +\alpha _{{1}}\alpha _{{3}}m{ n_x}\,{y}^{2}+ \\ {\alpha _{{2 }}}^{2} ( x \left( m{ n_y}-4\,{ m_y}\,n \right) ) ^{2} +\alpha _{{2}}\alpha _{{3}}( m{ n_x}\,{x}^{2}-m{ n_y}\,xy+{ m_y}\,nxy+mnx ) -{\alpha _{{3}}}^{2}my ( { n_x}\,x+n ) ), \\ \\ C^{t}=\frac{-1}{4}[\left( 2\,{{ m_x}}^{2}{t}^{2}+2\,{{ n_x}}^{2}{t}^{2} \right) \alpha _{{1}}+ \left( 2\,{{ m_y}}^{2}{t}^{2}+2\,{{ n_y}}^{ 2}{t}^{2} \right) \alpha _{{2}}+ \left( 2\,{ m_x}\,{ m_y}\,{t}^{2}+ 2\,{ n_x}\,{ n_y}\,{t}^{2} \right) \alpha _{{3}}+ \\ \left( 4\,{n}^{3} { n_x}\,{t}^{2}x+4\,{m}^{4}{t}^{2}+2\,{m}^{2}{n}^{2}{t}^{2}+2\,{n}^{ 4}{t}^{2} \right) \alpha _{{4}}+4\,m{ n_x}\,tx+4\,m{ n_y}\,ty+4\,mn t]-{\frac{ \left( {m}^{2}+{n}^{2} \right) \left( {x}^{2}\alpha _{{2}}- xy\alpha _{{3}}+{y}^{2}\alpha _{{1}} \right) }{2\,(4\,\alpha _{{1}}\alpha _{{2 }}-{\alpha _{{3}}}^{2})}}. \end{array} \end{aligned}$$
(5.18)
Case 2 If \(M^{1}= \left( 2\,t\, { n_t}+x\,{ n_x}+2\,y\,{ n_y}+n \right)\) and \(M^{2}=\left( 2\,t\,{ m_t}+x\,{ m_x}+y\,{ m_y}+m \right)\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}= \left( 2\,{ m_t}\,{ m_x}\,t+\frac{1}{2}\,{{ n_x}}^{2}x+{ n_x}\,{ n_y}\,y+m{ m_x}+n{ n_x}+\frac{1}{2}\,{{ m_x}}^{2}x+{ m_x} \,{ m_y}\,y+2\,{ n_t}\,{ n_x}\,t \right) \alpha _{{1}}+ \\ \left( \frac{-1}{2}\,{{ m_y}}^{2}x-\frac{1}{2}\,{{ n_y}}^{2}x \right) \alpha _{{2}}+ \left( { m_t}\,{ m_y}\,t+m{ m_y}+n{ n_y}+\frac{1}{2}\,{{ m_y}}^{2}y+{ n_t }\,{ n_y}\,t+\frac{1}{2}\,{{ n_y}}^{2}y \right) \alpha _{{3}}+ \\ \left( -{n}^ {3}{ n_y}\,xy-\frac{1}{4}\,{m}^{4}x-\frac{1}{2}\,{m}^{2}{n}^{2}x+2\,{n}^{3}{ n_t} \,tx \right) \alpha _{{4}}+m{ n_t}\,x, \\ C^{y}=\frac{1}{2}\,y\,\left( {{ m_x}}^{2}+{{ n_x}}^{2} \right) \alpha _{{1}}+ ( n{ n_y}+2\,{ m_t}\,{ m_y}\,t+{ m_x}\,{ m_y}\,x+\frac{1}{2}\,{{ m_y}}^{2}y+2\,{ n_t}\,{ n_y}\,t+{ n_x }\,{ n_y}\,x+\frac{1}{2}\,{{ n_y}}^{2}y \\ +m{ m_y} ) \alpha _{{2}}+ \left( { m_t}\,{ m_x}\,t+{ n_t}\,{ n_x}\,t+\frac{1}{2}\,{{ n_x}}^{2 }x+\frac{1}{2}\,{{ m_x}}^{2}x \right) \alpha _{{3}}+ \left( {n}^{3}{} { n_x}\, xy-\frac{1}{4}\,{m}^{4}y-\frac{1}{2}\,{m}^{2}{n}^{2}y \right) \alpha _{{4}}+m{ n_t}\, y, \\ C^{t}= \left( -{{ m_x}}^{2}t-{{ n_x}}^{2}t \right) \alpha _ {{1}}+ \left( -{{ m_y}}^{2}t-{{ n_y}}^{2}t \right) \alpha _{{2}}+ \left( -{ m_x}\,{ m_y}\,t-{ n_x}\,{ n_y}\,t \right) \alpha _{{ 3}} \\ + \left( -{n}^{4}t-2\,{n}^{3}{ n_x}\,tx-\frac{1}{2}\,{m}^{4}t-{m}^{2}{n}^ {2}t \right) \alpha _{{4}}-m{ n_x}\,x-m{ n_y}\,y-mn. \end{array} \end{aligned}$$
(5.19)
Case 3 When \(M^{1}=- \left( 2\,\alpha _{1}\,t\, { n_x}+\alpha _{3}\,t\, { n_y}+m\,x \right)\) and \(M^{2}=-\left( 2\,\alpha _{1}\,t\, { m_x}+\alpha _{3}\,t\, { m_y}-n\,x \right)\), we obtain
$$\begin{aligned} \begin{array}{l} C^{x}=( -{{ m_x}}^{2}t-{{ n_x}}^{2}t ) {\alpha _{{1}}}^{2}+ [( {{ m_y}}^{2}t+{{ n_y}}^{2}t ) \,\alpha _{{2}}+ ( -{ m_x}\,{ m_y}\,t-{ n_x}\,{ n_y}\,t ) \alpha _{{3}}+ ( {m}^{2}{n}^{2}t-{n}^{3}{} { n_t}\,{t}^{2} +\frac{1}{2}\,{m}^{4}t ) \alpha _{{4}} \\ -2\,m{ n_t}\,t-m{ n_x}\,x+{ m_x}\,nx-mn \alpha _{{1}}]+ ( -\frac{1}{2}\,{{ n_y}}^{2}t-\frac{1}{2}\,{{ m_y}}^{2}t ) {\alpha _{{3}}}^{2}+ ( \alpha _{{4}}{n}^{3}{ n_y}\,tx+{ m_y}\,nx ) \alpha _{{3}},\\ C^{y}= \left( \left( -2\,{ m_x}\,{ m_y}\,t-2\,{ n_x}\,{ n_y}\,t \right) \alpha _{{2}}+ \left( -\frac{1}{2}\,{{ n_x}}^{2}t-\frac{1}{2}\,{{ m_x}}^{2}t \right) \alpha _{{3}} \right) \alpha _{{1}}+ ( ( -\frac{1}{2}\,{{ n_y}}^{2}t-\frac{1}{2}\,{{ m_y}}^{2}t ) \alpha _{{3} } \\ -m{ n_y}\,x+{ m_y}\,nx ) \alpha _{{2}} + ( \left( \frac{1}{2}\, {m}^{2}{n}^{2}t-{n}^{3}{} { n_x}\,tx+\frac{1}{4}\,{m}^{4}t \right) \alpha _{{4}} -m{ n_t}\,t-m{ n_x}\,x-mn ) \alpha _{{3}},\\ C^{t}=\left( \alpha _{{4}}{n}^{3}{} { n_x}\,{t}^{2}+2\,m{ n_x }\,t \right) \alpha _{{1}}+\frac{1}{2}\,x{n}^{2}+\alpha _{{3}}m{ n_y}\,t+\frac{1}{2}\, {m}^{2}x. \end{array} \end{aligned}$$
(5.20)
Case 4 If \(M^{1}=- \left( 2\,\alpha _{2}\,t\, { n_y}+\alpha _{3}\,t\, { n_x}+m\,y \right)\) and \(M^{2}=- \left( 2\,\alpha _{2}\,t\, { m_y}+\alpha _{3}\,t\, { m_x}-n\,y \right)\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}=2\,\alpha _{{2}}\alpha _{{4}}{n}^{3}{} { n_y}\,tx-t \left( \frac{1}{2}\,{n}^{3}{ n_t}\,t-\frac{1}{4}\,{m}^{4}-\frac{1}{2}\,{m}^{2}{n}^{2} \right) \alpha _{{3}}\alpha _{{4}}-2\,t \left( { m_x}\,{ m_y}+{ n_x}\,{ n_y} \right) \alpha _{{1}}\alpha _{{2}} \\ -\frac{1}{2}\,t \left( {{ m_x}}^{2}+ \frac{1}{2}\,{{ n_x}}^{2} \right) \alpha _{{1}}\alpha _{{3}}-\frac{1}{2}\,t \left( {{ m_y}}^{2}+{{ n_y}}^{2} \right) \alpha _{{2}}\alpha _{{3}}-y \left( m{ n_x}-{ m_x}\,n \right) \alpha _{{1}}- \left( m{ n_t}\,t-{ m_y}\,ny \right) \alpha _{{3}}, \\ C^{y}= \left( {{ m_x}}^{2}t+{{ n_x}}^{2}t \right) \alpha _{ {2}}\alpha _{{1}}+ \left( -{{ m_y}}^{2}t-{{ n_y}}^{2}t \right) { \alpha _{{2}}}^{2}+ \left( -\frac{1}{2}\,{{ m_x}}^{ 2}t-\frac{1}{2}\,{{ n_x}}^{2}t \right) {\alpha _{{3}}}^{2}-\alpha _{{3}}m{ n_x}\,y \\ + [ \left( -{ m_x}\,{ m_y}\,t-{ n_x}\,{ n_y}\,t \right) \alpha _{{3}}+ \left( {m}^{2}{n}^{2}t-2\,{n}^{3}{ n_x}\,tx+\frac{1}{2}\,{m}^{4}t \right) \alpha _{{4}} -2\,m{ n_t}\,t-m{ n_y}\,y+{ m_y}\,ny-mn ] \alpha _{{2}}, \\ C^{t}=2\,\alpha _{{2}}m{ n_y}\,t+ \left( \frac{1}{2}\,\alpha _{{4}}{n} ^{3}{} { n_x}\,{t}^{2}+m{ n_x}\,t \right) \alpha _{{3}}+\frac{1}{2}\,y{m}^{2}+ \frac{1}{2}\,{n}^{2}y. \end{array} \end{aligned}$$
(5.21)
Case 5 If \(M^{1}=-m\) and \(M^{2}=n\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}= \alpha _{{1}} \left( -m{ n_x}+{ m_x}\,n \right) + \alpha _{{3}}{} { m_y}\,n, \\ C^{y}= \alpha _{{2}} \left( -m{ n_y}+{ m_y}\,n \right) - \alpha _{{3}}m{ n_x}, \\ C^{t}= \frac{1}{2}\,({m}^{2}+{n}^{2}). \end{array} \end{aligned}$$
(5.22)
Case 6 If \(M^{1}=\left( 2\,\alpha _{1}\,y\, { n_x}-2\,\alpha _{2}\,x\, { n_y}-\alpha _{3}\,(x\, { n_x}-y\, { n_y}) \right)\) and
\(M^{2}=\left( 2\,\alpha _{1}\,y\, { m_x}-2\,\alpha _{2}\,x\, { m_y}-\alpha _{3}\,(x\, { m_x}-y\, { m_y}) \right)\), then we have
$$\begin{aligned}{} & {} C^{x}= \left( {{ m_x}}^{2}y+{{ n_x}}^{2}y \right) {\alpha _ {{1}}}^{2}+ \left( \left( -\frac{1}{2}\,{{ m_y}}^{2}x-\frac{1}{2}\,{{ n_y}}^{2}x \right) \alpha _{{3}}+\alpha _{{4}}{n}^{3}{} { n_y}\,{x}^{2 } \right) \alpha _{{2}}+ \left( \frac{1}{2}\,{{ n_y}}^{2}y+\frac{1}{2}\,{{ m_y}}^{2 }y \right) {\alpha _{{3}}}^{2} \nonumber \\{} & {} \left[ \left( -2\,{ m_x}\,{ m_y}\,x-{{ m_y}}^{2}y-2 \,{ n_x}\,{ n_y}\,x-{{ n_y}}^{2}y \right) \alpha _{{2}}+ \left( - \frac{1}{2}\,{{ m_x}}^{2}x+{ m_x}\,{ m_y}\,y-\frac{1}{2}\,{{ n_x}}^{2}x+{ n_x}\,{ n_y}\,y \right) \alpha _{{3}}\right. \nonumber \\{} & {} \left. + \left( 2\,{n}^{3}{ n_t}\,ty-\frac{1}{2}\,{m}^{4}y-{m}^{2}{n}^{2}y \right) \alpha _{{4}}+2\,m{ n_t}\,y \right] \alpha _{{1}}+ \left( \left( \frac{1}{4}\,{m}^{4}x+\frac{1}{2}\,{m}^{ 2}{n}^{2}x-{n}^{3}{ n_y}\,xy \right) \alpha _{{4}}-m{ n_t}\,x \right) \alpha _{{3}}, \nonumber \\{} & {} C^{y}=\left[ \left( {{ m_x}}^{2}x+2\,{ m_x}\,{ m_y}\,y +{{ n_x}}^{2}x+2\,{ n_x}\,{ n_y}\,y \right) \alpha _{{2}}+ \left( \frac{1}{2}\,{{ n_x}}^{2}y+\frac{1}{2}\,{{ m_x}}^{2}y \right) \alpha _{{3}} \right] \alpha _{{1}}+ \left( -{{ m_y}}^{2}x-{{ n_y}}^{2}x \right) {\alpha _{{2}}}^{2} \nonumber \\{} & {} + \left[ \left( \frac{1}{2}\,{{ n_y}}^{2}y+\frac{1}{2}\, {{ m_y}}^{2}y-{ m_x}\,{ m_y}\,x-{ n_x}\,{ n_y}\,x \right) \alpha _{{3}}+ \left( {m}^{2}{n}^{2}x-{n}^{3}{ n_x}\,{x}^{2}+\frac{1}{2}\,{m} ^{4}x \right) \alpha _{{4}}-2\,m{ n_t}\,x \right] \alpha _{{2}} \nonumber \\{} & {} + \left( -\frac{1}{2}\,{{ n_x}}^{2}x-\frac{1}{2}\,{{ m_x}}^{2}x \right) {\alpha _{{3 }}}^{2}+ \left[ \left( -\frac{1}{4}\,{m}^{4}y+{n}^{3}{} { n_x}\,xy-\frac{1}{2}\,{m}^{2 }{n}^{2}y \right) \alpha _{{4}}+m{ n_t}\,y \right] \alpha _{{3}}, \nonumber \\{} & {} C^{t}=\left( -2\,{n}^{3}{} { n_x}\,ty\alpha _{{4}}-2\,m{ n_x} \,y \right) \alpha _{{1}}+2\,\alpha _{{2}}m{ n_y}\,x+ \left( m{ n_x} \,x-m{ n_y}\,y \right) \alpha _{{3}}. \end{aligned}$$
(5.23)
Case 7 If \(M^{1}={ n_x}\) and \(M^{2}={ m_x}\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}=\frac{1}{2}\,\left( {{ m_x}}^{2}+ {{ n_x}}^{2} \right) \alpha _{{1}}- \frac{1}{2}\, \left( {{ m_y}}^{2}+ {{ n_y}}^{2} \right) \alpha _{{2}}+ \left( { n_t}\,{n}^{3}t- \frac{1}{4}\,{m}^{4}- \frac{1}{2}\,{m}^{2}{n}^{ 2} \right) \alpha _{{4}}+m{ n_t}, \\ C^{y}= \left( { m_x}\,{ m_y}+{ n_x}\,{ n_y} \right) \alpha _{{2}}+ \frac{1}{2}\,\left( {{ m_x}}^{2}+ {{ n_x}}^{2} \right) \alpha _{{3}}, \\ C^{t}=-{n}^{3}t{ n_x}\,\alpha _{{4}}-m{ n_x}. \end{array} \end{aligned}$$
(5.24)
Case 8 If \(M^{1}={ n_t}\) and \(M^{2}={ m_t}\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}= \left( { m_t}\,{ m_x}+{ n_t}\,{ n_x} \right) \alpha _{{1}}+ \frac{1}{2}\,\left( { m_t}\,{ m_y}+{ n_t}\,{ n_y} \right) \alpha _{{3}}, \\ C^{y}=\left( { m_t}\,{ m_y}+{ n_t}\,{ n_y} \right) \alpha _{{2}}+ \frac{1}{2}\,\left( { m_t}\,{ m_x}+{ n_t}\,{ n_x} \right) \alpha _{{3}}, \\ C^{t}=\frac{-1}{4}\,[\left( 2\,{{ m_x}}^{2}+{{ n_x}}^{2} \right) \alpha _{{1}}+ 2\,\left( {{ m_y}}^{2}+{{ n_y}}^{2} \right) \alpha _{{2}}+2\, \left( { m_x}\,{ m_y}+{ n_x}\, { n_y} \right) \alpha _{{3}}+ \left( {m}^{4}+2\,{m}^{2}{n}^{2 }+{n}^{4} \right) \alpha _{{4}}]. \end{array} \end{aligned}$$
(5.25)
Case 9 If \(M^{1}={ n_y}\) and \(M^{2}={ m_y}\), then we have
$$\begin{aligned} \begin{array}{l} C^{x}=\left( { m_x}\,{ m_y}+{ n_x}\,{ n_y} \right) \alpha _{{1}}+ \frac{1}{2}\,\left( {{ m_y}}^{2}+{{ n_y}}^{2} \right) \alpha _{{3}}-\alpha _{{4}}{n}^{3}{} { n_y}\,x, \\ C^{y}= \frac{-1}{4}\,[2\,\left( {{ n_x}}^{2}+{{ m_x}}^{2} \right) \alpha _{{1}}- 2\,\left( {{ m_y}}^{2}+{{ n_y}}^{2} \right) \alpha _{{2}}+ \left( {m}^{4}+2\,{m}^{ 2}{n}^{2} -4\,x{n}^{3}{} { n_x}\right) \alpha _{{4}}+m{ n_t}], \\ C^{t}=-m{ n_y}. \end{array} \end{aligned}$$
(5.26)

6 Conclusion

In this paper, we introduced the application of the Bernoulli sub-equation function method to derive novel exact travelling wave solutions for two significant physical models: the (2+1)-dimensional HNLS equation and the (2+1)-dimensional HFSC equation. By this method, we discuss the obtained solutions at different values of K and S in Eqs. (2.3) and (2.4), respectively by using the relation \(S=K+1\) that we get from the balancing procedure. We observe that when \(a\ne b\), the solutions that we obtained are similar to the other and at \(a= b\) the solutions are the same. Thus, we notice that some exact solutions when \(S=3\) or \(S=4\) may be reduced to the solutions derived when \(S=2\). The computer systems like as Maple is used to solve the complicated algebraic equations to get these solutions. Also, by Maple software we have checked the obtained solutions. To the best of our knowledge, some of the obtained solutions for these models are new. Many authors obtained exact solutions of these models using various methods (Apeanti et al. 2019)- (Sahoo and Tripathy 2022). We compered our results for (1.1) and (1.2), with the solutions studied by using other methods (Apeanti et al. 2019; Tebue et al. 2020; Bashar et al. 2021; Han et al. 2022; Sahoo and Tripathy 2022), our results are novel. The geometrical shape for some of the obtained results are plotted in the form of two-dimensional and three-dimensional for various choices of the parameters that appear in the results. The absolute, real and imaginary parts of the solutions are plotted to discuss the physical behavior of the HNLS and HFSC equations. The obtained solutions can be classified as dark, singular and rational which may help researchers to known some physical meaning of these models. The behavior of solutions (3.7), (3.11),(3.21) and (3.23) are presented graphically through 3D and 2D in Figs. 1, 2, 3 and 4, respectively. Furthermore, by applying the Lie symmetry method, we construct the infinitesimal generators and using them to construct the symmetry group. Also, we investigate novel solutions of the studied models by the group transformations. In addition, the conservation laws for the models are obtained by multiplier approach. We hope that the obtained solutions are useful in the study of optics and other important equations of mathematical physics. The methods used here could be applied to other NLPDEs.

Declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

All authors have accepted responsibility for every content for this manuscript and approved its submission.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
Zurück zum Zitat Abdelsalam, U.M.: Exact travelling solutions of two coupled (2 + 1)-dimensional equations. J. Egypt. Math. Soc. 25, 125–128 (2017)MathSciNetCrossRef Abdelsalam, U.M.: Exact travelling solutions of two coupled (2 + 1)-dimensional equations. J. Egypt. Math. Soc. 25, 125–128 (2017)MathSciNetCrossRef
Zurück zum Zitat Akbulut, A., Mirzazadeh, M., Hashemi, M.S., Hosseini, K., Salahshour, S., Park, C.: Triki-Biswas model: its symmetry reduction, nucci’s reduction and conservation laws. Int. J. Modern Phys. B 37, 2350063 (2023)CrossRefADS Akbulut, A., Mirzazadeh, M., Hashemi, M.S., Hosseini, K., Salahshour, S., Park, C.: Triki-Biswas model: its symmetry reduction, nucci’s reduction and conservation laws. Int. J. Modern Phys. B 37, 2350063 (2023)CrossRefADS
Zurück zum Zitat Apeanti, W.O., Seadawy, A.R., Lua, D.: Complex optical solutions and modulation instability of hyperbolic Schrödinger dynamical equation. Res. Phys. 12, 2091–2097 (2019) Apeanti, W.O., Seadawy, A.R., Lua, D.: Complex optical solutions and modulation instability of hyperbolic Schrödinger dynamical equation. Res. Phys. 12, 2091–2097 (2019)
Zurück zum Zitat Bashar, M.H., Islam, S.M.R., Kumar, D.: Construction of traveling wave solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Partial Diff. Equ. Appl. Math. 4, 100040 (2021) Bashar, M.H., Islam, S.M.R., Kumar, D.: Construction of traveling wave solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Partial Diff. Equ. Appl. Math. 4, 100040 (2021)
Zurück zum Zitat Baskonus, H.M., Bulut, H., Emir, D.G.: Regarding new complex analytical solutions for the nonlinear partial Vakhnenko-Parkes differential equation via Bernoulli sub-equation function method. Math. Lett. 1, 1–9 (2015) Baskonus, H.M., Bulut, H., Emir, D.G.: Regarding new complex analytical solutions for the nonlinear partial Vakhnenko-Parkes differential equation via Bernoulli sub-equation function method. Math. Lett. 1, 1–9 (2015)
Zurück zum Zitat Devi, M., Yadav, S., Arora, R.: Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach. Appl. Math. Comput. 404, 126230 (2021)MathSciNet Devi, M., Yadav, S., Arora, R.: Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach. Appl. Math. Comput. 404, 126230 (2021)MathSciNet
Zurück zum Zitat El-Sabbagh, M., Shehata, A.R., Saleh, A.: B\(\ddot{a}\)cklund transformations for some non-linear evolution equations using painlevé analysis. Int. J. Pur. Appl. Math. 101, 171–186 (2015) El-Sabbagh, M., Shehata, A.R., Saleh, A.: B\(\ddot{a}\)cklund transformations for some non-linear evolution equations using painlevé analysis. Int. J. Pur. Appl. Math. 101, 171–186 (2015)
Zurück zum Zitat Fritzsche, B.: Sophus lie: a sketch of his life and work. J. Lie Theor. 9, 1–38 (1999)MathSciNet Fritzsche, B.: Sophus lie: a sketch of his life and work. J. Lie Theor. 9, 1–38 (1999)MathSciNet
Zurück zum Zitat Guo, A.L., Lin, J.: (2+1)-dimensional analytical solutions of the combining cubicquintic nonlinear Schrödinger equation. Commun. Theor. Phys. 57, 523–529 (2012)MathSciNetCrossRefADS Guo, A.L., Lin, J.: (2+1)-dimensional analytical solutions of the combining cubicquintic nonlinear Schrödinger equation. Commun. Theor. Phys. 57, 523–529 (2012)MathSciNetCrossRefADS
Zurück zum Zitat Han, T., Wen, J., Li, Z., Yuan, J.: New traveling wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. Math. Problems Eng. 2022, 1312181 (2022) Han, T., Wen, J., Li, Z., Yuan, J.: New traveling wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. Math. Problems Eng. 2022, 1312181 (2022)
Zurück zum Zitat Hassan, M.M.: Exact solitary wave solutions for a generalized KdV-Burgers equation. Chaos, Solitons Fractals 19, 1201–1206 (2004)MathSciNetCrossRefADS Hassan, M.M.: Exact solitary wave solutions for a generalized KdV-Burgers equation. Chaos, Solitons Fractals 19, 1201–1206 (2004)MathSciNetCrossRefADS
Zurück zum Zitat Hassan, M.M., Abdel-Razek, M.A., Shoreh, A.A.-H.: New exact solutions of some (2+1)-dimeneional nonlinear evolution equations via extended Kudryashov method. Rep. Math. Phys. 74, 347–358 (2014)MathSciNetCrossRefADS Hassan, M.M., Abdel-Razek, M.A., Shoreh, A.A.-H.: New exact solutions of some (2+1)-dimeneional nonlinear evolution equations via extended Kudryashov method. Rep. Math. Phys. 74, 347–358 (2014)MathSciNetCrossRefADS
Zurück zum Zitat Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: Exact solutions to a class of Schamel nonlinear equations modeling dust ion-acoustic waves in plasma. Assiut Univ. J. Multidiscip. Sci. Res. 51, 115–134 (2022) Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: Exact solutions to a class of Schamel nonlinear equations modeling dust ion-acoustic waves in plasma. Assiut Univ. J. Multidiscip. Sci. Res. 51, 115–134 (2022)
Zurück zum Zitat Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: The investigation of exact solutions and conservation laws of the classical Boussinesq system via the Lie symmetry method. Appl. Math. Inf. Sci. 16, 177–185 (2022) Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: The investigation of exact solutions and conservation laws of the classical Boussinesq system via the Lie symmetry method. Appl. Math. Inf. Sci. 16, 177–185 (2022)
Zurück zum Zitat Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: Conservation laws and travelling wave solutions for system of ion sound and Langmuir waves. J. Adv. Math. Comput. Sci. 37, 16–32 (2022)CrossRef Hassan, M.M., Shehata, A.R., Abdel-Daym, M.S.: Conservation laws and travelling wave solutions for system of ion sound and Langmuir waves. J. Adv. Math. Comput. Sci. 37, 16–32 (2022)CrossRef
Zurück zum Zitat Hosseini, K., Salahshour, S., Mirzazadeh, M., Ahmadian, A., Baleanu, D., Khoshrang, A.: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 206 (2021)CrossRef Hosseini, K., Salahshour, S., Mirzazadeh, M., Ahmadian, A., Baleanu, D., Khoshrang, A.: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 206 (2021)CrossRef
Zurück zum Zitat Khater, A.H., Hassan, M.M., Callebaut, D.K.: Travelling wave solutions to some important equations of mathematical physics. Rep. Math. Phys. 66, 1–19 (2010)MathSciNetCrossRefADS Khater, A.H., Hassan, M.M., Callebaut, D.K.: Travelling wave solutions to some important equations of mathematical physics. Rep. Math. Phys. 66, 1–19 (2010)MathSciNetCrossRefADS
Zurück zum Zitat Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Comm. Nonl. Sci. Num. Simul. 17, 2248–2253 (2012)MathSciNetCrossRefADS Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Comm. Nonl. Sci. Num. Simul. 17, 2248–2253 (2012)MathSciNetCrossRefADS
Zurück zum Zitat Liu, S., Fu, Z., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)MathSciNetCrossRefADS Liu, S., Fu, Z., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)MathSciNetCrossRefADS
Zurück zum Zitat Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.S.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electr. 55, 8 (2023)CrossRef Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.S.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electr. 55, 8 (2023)CrossRef
Zurück zum Zitat Mirzazadeh, M., Sharif, A., Hashemi, M.S., Akgül, A., El Din, S.M.: Optical solitons with an extended (3 + 1)-dimensional nonlinear conformable Schrödinger equation including cubic-quintic nonlinearity. Res. Phys. 49, 106521 (2023) Mirzazadeh, M., Sharif, A., Hashemi, M.S., Akgül, A., El Din, S.M.: Optical solitons with an extended (3 + 1)-dimensional nonlinear conformable Schrödinger equation including cubic-quintic nonlinearity. Res. Phys. 49, 106521 (2023)
Zurück zum Zitat Naz, R.: Conservation laws for some systems of nonlinear partial differential equations via multiplier approach. J. Appl. Math. 2012, 871253 (2012)MathSciNetCrossRef Naz, R.: Conservation laws for some systems of nonlinear partial differential equations via multiplier approach. J. Appl. Math. 2012, 871253 (2012)MathSciNetCrossRef
Zurück zum Zitat Rogers, C., Shadwick, W.F.: B\(\ddot{a}\)cklund Transformations. Academic Press, New York (1982) Rogers, C., Shadwick, W.F.: B\(\ddot{a}\)cklund Transformations. Academic Press, New York (1982)
Zurück zum Zitat Sahoo, S., Tripathy, A.: New exact solitary solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Eur. Phys. J. Plus 137, 390 (2022)CrossRef Sahoo, S., Tripathy, A.: New exact solitary solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Eur. Phys. J. Plus 137, 390 (2022)CrossRef
Zurück zum Zitat Seadawy, A.R., Kumar, D., Chakrabarty, A.K.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Eur. Phys. J. Plus 133, 182 (2018)CrossRef Seadawy, A.R., Kumar, D., Chakrabarty, A.K.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Eur. Phys. J. Plus 133, 182 (2018)CrossRef
Zurück zum Zitat Shehata, A.R.: The traveling wave solutions of the perturbed nonlinear Schrödinger equation and the cubic-quintic Ginzburg Landau equation using the modified \((\frac{G^{\prime }}{G})\)-expansion method. Appl. Math. Comput. 217, 1–10 (2010)MathSciNet Shehata, A.R.: The traveling wave solutions of the perturbed nonlinear Schrödinger equation and the cubic-quintic Ginzburg Landau equation using the modified \((\frac{G^{\prime }}{G})\)-expansion method. Appl. Math. Comput. 217, 1–10 (2010)MathSciNet
Zurück zum Zitat Shehata, A.R., Abu-Amra, S.: Traveling wave solutions for some nonlinear partial differential equations by using modified \((\frac{w}{g})\)-expansion method. Eur. J. Math. Sci. 4, 35–58 (2018) Shehata, A.R., Abu-Amra, S.: Traveling wave solutions for some nonlinear partial differential equations by using modified \((\frac{w}{g})\)-expansion method. Eur. J. Math. Sci. 4, 35–58 (2018)
Zurück zum Zitat Singh, D., Yadav, S., Arora, R.: A (2+1)-dimensional modified dispersive water-wave (MDWW) system: lie symmetry analysis, optimal system and invariant solutions. Commun. Nonl. Sci. Numer. Simulat. 115, 106786 (2022)MathSciNetCrossRef Singh, D., Yadav, S., Arora, R.: A (2+1)-dimensional modified dispersive water-wave (MDWW) system: lie symmetry analysis, optimal system and invariant solutions. Commun. Nonl. Sci. Numer. Simulat. 115, 106786 (2022)MathSciNetCrossRef
Zurück zum Zitat Tebue, E.T., Manemo, C.T., Rezazadeh, H., Bekir, A., Chu, Y.M.: Optical solutions of the (2 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods. Res. Phys. 19, 103514 (2020) Tebue, E.T., Manemo, C.T., Rezazadeh, H., Bekir, A., Chu, Y.M.: Optical solutions of the (2 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods. Res. Phys. 19, 103514 (2020)
Zurück zum Zitat Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)MathSciNetCrossRef Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)MathSciNetCrossRef
Zurück zum Zitat Yong, X., Wang, H., Zhang, Y.: Symmetry, integrability and exact solutions of a variable-coefficient Korteweg-de Vries (vcKdV) equation. Int. J. Non. Sci. 14, 329–335 (2012)MathSciNet Yong, X., Wang, H., Zhang, Y.: Symmetry, integrability and exact solutions of a variable-coefficient Korteweg-de Vries (vcKdV) equation. Int. J. Non. Sci. 14, 329–335 (2012)MathSciNet
Zurück zum Zitat Zhou, Y.B., Wang, M.L., Wang, Y.M.: Periodic wave solutions to a coupled KdV equations with variable coeffcients. Phys. Lett. A 308, 31–36 (2003)MathSciNetCrossRefADS Zhou, Y.B., Wang, M.L., Wang, Y.M.: Periodic wave solutions to a coupled KdV equations with variable coeffcients. Phys. Lett. A 308, 31–36 (2003)MathSciNetCrossRefADS
Metadaten
Titel
Exact solutions, symmetry groups and conservation laws for some (2+1)-dimensional nonlinear physical models
verfasst von
M. M. Hassan
A. R. Shehata
M. S. Abdel-Daym
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05820-7

Weitere Artikel der Ausgabe 2/2024

Optical and Quantum Electronics 2/2024 Zur Ausgabe

Neuer Inhalt