Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Examining the (1 + 1)-dimensional Schrödinger–Hirota equation with Kerr effect under inter-modal dispersion using the invariance theory

verfasst von: Handenur Esen, Aydin Secer, Mir Sajjad Hashemi, Muslum Ozisik, Mustafa Bayram

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, \((1+1)\)-dimensional Schrödinger–Hirota equation with Kerr law having inter-modal dispersion is considered. This model designates the propagation of pulses in optical fibers, so it has a significant impact on the model and optimization of optical fiber communication systems. Utilizing the Lie symmetry technique, three generators are produced and three sub-algebras are derived by the combination of these generators. Lie symmetry analysis is the basis of the reduction of the presented nonlinear partial differential equation to the nonlinear ordinary differential equation system. We implement the unified Riccati equation expansion method so that we acquire the analytical soliton solutions. Thus, periodic singular, dark, and singular solitons are retrieved; besides, their 3-dimensional portraits are illustrated by selecting appropriate parameter values. Moreover, the influence of the parameters of the presented model is investigated via various 2-dimensional graphical visualizations. This study reports that all produced solutions satisfy the presented model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Kaur, L., Adel, W., Inc, M., Rezazadeh, H., Akinyemi, L.: Gaussian solitary wave solutions for nonlinear perturbed Schrödinger equations with applications in nanofibers. Int. J. Modern Phys. B 2450318 (2023) Kaur, L., Adel, W., Inc, M., Rezazadeh, H., Akinyemi, L.: Gaussian solitary wave solutions for nonlinear perturbed Schrödinger equations with applications in nanofibers. Int. J. Modern Phys. B 2450318 (2023)
Zurück zum Zitat Kai, Y., Chen, S., Zhang, K., Yin, Z.: Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves Random Complex Media 1–12 (2022) Kai, Y., Chen, S., Zhang, K., Yin, Z.: Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves Random Complex Media 1–12 (2022)
Zurück zum Zitat Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems, vol. 302. Cambridge University Press, Cambridge (2004) Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems, vol. 302. Cambridge University Press, Cambridge (2004)
Zurück zum Zitat Akinyemi, L., Rezazadeh, H., Shi, Q.-H., Inc, M., Khater, M.M., Ahmad, H., Jhangeer, A., Akbar, M.A.: New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion. Results Phys. 29, 104656 (2021) Akinyemi, L., Rezazadeh, H., Shi, Q.-H., Inc, M., Khater, M.M., Ahmad, H., Jhangeer, A., Akbar, M.A.: New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion. Results Phys. 29, 104656 (2021)
Zurück zum Zitat Akinyemi, L., Inc, M., Khater, M.M., Rezazadeh, H.: Dynamical behaviour of chiral nonlinear Schrödinger equation. Opt. Quantum Electron. 54(3), 191 (2022) Akinyemi, L., Inc, M., Khater, M.M., Rezazadeh, H.: Dynamical behaviour of chiral nonlinear Schrödinger equation. Opt. Quantum Electron. 54(3), 191 (2022)
Zurück zum Zitat Arnous, A.H., Ullah, M.Z., Asma, M., Moshokoa, S.P., Zhou, Q., Mirzazadeh, M., Biswas, A., Belic, M.: Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik 136, 445–450 (2017)ADS Arnous, A.H., Ullah, M.Z., Asma, M., Moshokoa, S.P., Zhou, Q., Mirzazadeh, M., Biswas, A., Belic, M.: Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik 136, 445–450 (2017)ADS
Zurück zum Zitat Bhrawy, A., Alshaery, A., Hilal, E., Manrakhan, W.N., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23(01), 1450014 (2014)ADS Bhrawy, A., Alshaery, A., Hilal, E., Manrakhan, W.N., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23(01), 1450014 (2014)ADS
Zurück zum Zitat Biswas, A.: Stochastic perturbation of optical solitons in Schrödinger–Hirota equation. Opt. Commun. 239(4–6), 461–466 (2004)ADS Biswas, A.: Stochastic perturbation of optical solitons in Schrödinger–Hirota equation. Opt. Commun. 239(4–6), 461–466 (2004)ADS
Zurück zum Zitat Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)ADS Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)ADS
Zurück zum Zitat Cakicioglu, H., Ozisik, M., Secer, A., Bayram, M.: Stochastic dispersive Schrödinger–Hirota equation having parabolic law nonlinearity with multiplicative white noise via ito calculus. Optik 279, 170776 (2023)ADS Cakicioglu, H., Ozisik, M., Secer, A., Bayram, M.: Stochastic dispersive Schrödinger–Hirota equation having parabolic law nonlinearity with multiplicative white noise via ito calculus. Optik 279, 170776 (2023)ADS
Zurück zum Zitat Czachor, M.: Nonlinear Schrödinger equation and two-level atoms. Phys. Rev. A 53(3), 1310 (1996)ADS Czachor, M.: Nonlinear Schrödinger equation and two-level atoms. Phys. Rev. A 53(3), 1310 (1996)ADS
Zurück zum Zitat Du, W., Wang, G.: Intra-event spatial correlations for cumulative absolute velocity, arias intensity, and spectral accelerations based on regional site conditions. Bull. Seismol. Soc. Am. 103(2A), 1117–1129 (2013) Du, W., Wang, G.: Intra-event spatial correlations for cumulative absolute velocity, arias intensity, and spectral accelerations based on regional site conditions. Bull. Seismol. Soc. Am. 103(2A), 1117–1129 (2013)
Zurück zum Zitat Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)ADS Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Asma, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik 136, 451–461 (2017)ADS
Zurück zum Zitat Fibich, G.: The Nonlinear Schrödinger Equation, vol. 192. Springer, Cham (2015) Fibich, G.: The Nonlinear Schrödinger Equation, vol. 192. Springer, Cham (2015)
Zurück zum Zitat Grillakis, M.G.: On nonlinear schrödinger equations: nonlinear schrödinger equations. Commun. Partial Differ. Equ. 25(9–10), 1827–1844 (2000) Grillakis, M.G.: On nonlinear schrödinger equations: nonlinear schrödinger equations. Commun. Partial Differ. Equ. 25(9–10), 1827–1844 (2000)
Zurück zum Zitat Hashemi, M.S.: A variable coefficient third degree generalized Abel equation method for solving stochastic Schrödinger–Hirota model. Chaos Solitons Fractals 180, 114606 (2024) Hashemi, M.S.: A variable coefficient third degree generalized Abel equation method for solving stochastic Schrödinger–Hirota model. Chaos Solitons Fractals 180, 114606 (2024)
Zurück zum Zitat Hashemi, M.S., Mirzazadeh, M.: Optical solitons of the perturbed nonlinear Schrödinger equation using lie symmetry method. Optik 281, 170816 (2023)ADS Hashemi, M.S., Mirzazadeh, M.: Optical solitons of the perturbed nonlinear Schrödinger equation using lie symmetry method. Optik 281, 170816 (2023)ADS
Zurück zum Zitat Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Dispersive optical solitons and modulation instability analysis of Schrödinger–Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlattices Microstruct. 113, 319–327 (2018)ADS Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Dispersive optical solitons and modulation instability analysis of Schrödinger–Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlattices Microstruct. 113, 319–327 (2018)ADS
Zurück zum Zitat Kaur, L., Wazwaz, A.-M.: Bright-dark optical solitons for Schrödinger–Hirota equation with variable coefficients. Optik 179, 479–484 (2019)ADS Kaur, L., Wazwaz, A.-M.: Bright-dark optical solitons for Schrödinger–Hirota equation with variable coefficients. Optik 179, 479–484 (2019)ADS
Zurück zum Zitat Kaur, L., Wazwaz, A.-M.: Einstein’s vacuum field equation: Painlevé analysis and lie symmetries. Waves Random Complex Media 31(2), 199–206 (2021)ADSMathSciNet Kaur, L., Wazwaz, A.-M.: Einstein’s vacuum field equation: Painlevé analysis and lie symmetries. Waves Random Complex Media 31(2), 199–206 (2021)ADSMathSciNet
Zurück zum Zitat Kodama, Y., Romagnoli, M., Wabnitz, S., Midrio, M.: Role of third-order dispersion on soliton instabilities and interactions in optical fibers. Opt. Lett. 19(3), 165–167 (1994)ADS Kodama, Y., Romagnoli, M., Wabnitz, S., Midrio, M.: Role of third-order dispersion on soliton instabilities and interactions in optical fibers. Opt. Lett. 19(3), 165–167 (1994)ADS
Zurück zum Zitat Kumar, S., Malik, S.: Cubic-quartic optical solitons with Kudryashov’s law of refractive index by lie symmetry analysis. Optik 242, 167308 (2021)ADS Kumar, S., Malik, S.: Cubic-quartic optical solitons with Kudryashov’s law of refractive index by lie symmetry analysis. Optik 242, 167308 (2021)ADS
Zurück zum Zitat Kumar, S., Zhou, Q., Bhrawy, A.H., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by lie symmetry analysis. Rom. Rep. Phys. 68(1), 341–352 (2016) Kumar, S., Zhou, Q., Bhrawy, A.H., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by lie symmetry analysis. Rom. Rep. Phys. 68(1), 341–352 (2016)
Zurück zum Zitat Kumar, S., Biswas, A., Ekici, M., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Optical solitons and other solutions with anti-cubic nonlinearity by lie symmetry analysis and additional integration architectures. Optik 185, 30–38 (2019)ADS Kumar, S., Biswas, A., Ekici, M., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Optical solitons and other solutions with anti-cubic nonlinearity by lie symmetry analysis and additional integration architectures. Optik 185, 30–38 (2019)ADS
Zurück zum Zitat Kumar, S., Malik, S., Biswas, A., Zhou, Q., Moraru, L., Alzahrani, A., Belic, M.: Optical solitons with Kudryashov’s equation by lie symmetry analysis. Phys. Wave Phenom. 28, 299–304 (2020)ADS Kumar, S., Malik, S., Biswas, A., Zhou, Q., Moraru, L., Alzahrani, A., Belic, M.: Optical solitons with Kudryashov’s equation by lie symmetry analysis. Phys. Wave Phenom. 28, 299–304 (2020)ADS
Zurück zum Zitat Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75(8), 085005 (2023)ADS Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75(8), 085005 (2023)ADS
Zurück zum Zitat Morgan, S., Ballagh, R., Burnett, K.: Solitary-wave solutions to nonlinear Schrödinger equations. Phys. Rev. A 55(6), 4338 (1997)ADS Morgan, S., Ballagh, R., Burnett, K.: Solitary-wave solutions to nonlinear Schrödinger equations. Phys. Rev. A 55(6), 4338 (1997)ADS
Zurück zum Zitat Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer Science & Business Media, New York (1993) Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer Science & Business Media, New York (1993)
Zurück zum Zitat Onder, I., Esen, H., Secer, A., Ozisik, M., Bayram, M.: Optical soliton solutions of dispersive Schrödinger–Hirota equation with chromatic and inter-modal dispersion in a couple of law medium. Opt. Quantum Electron. 55(8), 742 (2023) Onder, I., Esen, H., Secer, A., Ozisik, M., Bayram, M.: Optical soliton solutions of dispersive Schrödinger–Hirota equation with chromatic and inter-modal dispersion in a couple of law medium. Opt. Quantum Electron. 55(8), 742 (2023)
Zurück zum Zitat Ozdemir, N.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having kerr law. Optik 271, 170127 (2022)ADS Ozdemir, N.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having kerr law. Optik 271, 170127 (2022)ADS
Zurück zum Zitat Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik 265, 169545 (2022)ADS Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik 265, 169545 (2022)ADS
Zurück zum Zitat Özkan, Y.S., Yaşar, E.: Multiwave and interaction solutions and lie symmetry analysis to a new (2+ 1)-dimensional Sakovich equation. Alex. Eng. J. 59(6), 5285–5293 (2020) Özkan, Y.S., Yaşar, E.: Multiwave and interaction solutions and lie symmetry analysis to a new (2+ 1)-dimensional Sakovich equation. Alex. Eng. J. 59(6), 5285–5293 (2020)
Zurück zum Zitat Özkan, Y.S., Yaşar, E., Seadawy, A.R.: A third-order nonlinear Schrödinger equation: the exact solutions, group-invariant solutions and conservation laws. J. Taibah Univ. Sci. 14(1), 585–597 (2020) Özkan, Y.S., Yaşar, E., Seadawy, A.R.: A third-order nonlinear Schrödinger equation: the exact solutions, group-invariant solutions and conservation laws. J. Taibah Univ. Sci. 14(1), 585–597 (2020)
Zurück zum Zitat Pang, X.-F.: The Schrödinger equation only describes approximately the properties of motion of microscopic particles in quantum mechanics. Nat. Sci. 3(1), 29–38 (2008) Pang, X.-F.: The Schrödinger equation only describes approximately the properties of motion of microscopic particles in quantum mechanics. Nat. Sci. 3(1), 29–38 (2008)
Zurück zum Zitat Rehman, H.U., Iqbal, I., Hashemi, M.S., Mirzazadeh, M., Eslami, M.: Analysis of cubic-quartic-nonlinear Schrödinger’s equation with cubic-quintic-septic-nonic form of self-phase modulation through different techniques. Optik 287, 171028 (2023)ADS Rehman, H.U., Iqbal, I., Hashemi, M.S., Mirzazadeh, M., Eslami, M.: Analysis of cubic-quartic-nonlinear Schrödinger’s equation with cubic-quintic-septic-nonic form of self-phase modulation through different techniques. Optik 287, 171028 (2023)ADS
Zurück zum Zitat Richardson, C.D., Schlagheck, P., Martin, J., Vandewalle, N., Bastin, T.: Nonlinear Schrödinger wave equation with linear quantum behavior. Phys. Rev. A 89(3), 032118 (2014)ADS Richardson, C.D., Schlagheck, P., Martin, J., Vandewalle, N., Bastin, T.: Nonlinear Schrödinger wave equation with linear quantum behavior. Phys. Rev. A 89(3), 032118 (2014)ADS
Zurück zum Zitat Samir, I., Ahmed, H.M., Mirzazadeh, M., Triki, H.: Derivation new solitons and other solutions for higher order Sasa–Satsuma equation by using the improved modified extended tanh scheme. Optik 274, 170592 (2023b)ADS Samir, I., Ahmed, H.M., Mirzazadeh, M., Triki, H.: Derivation new solitons and other solutions for higher order Sasa–Satsuma equation by using the improved modified extended tanh scheme. Optik 274, 170592 (2023b)ADS
Zurück zum Zitat Samir, I., Abdalla, N.S.E., Abd-Elmonem, A., Ahmed, H.M.: Abundant optical solitons to Biswas–Milovic model having parabolic law nonlinearity and spatio-temporal dispersion using improved modified extended tanh function scheme. Optik 290, 171281 (2023c)ADS Samir, I., Abdalla, N.S.E., Abd-Elmonem, A., Ahmed, H.M.: Abundant optical solitons to Biswas–Milovic model having parabolic law nonlinearity and spatio-temporal dispersion using improved modified extended tanh function scheme. Optik 290, 171281 (2023c)ADS
Zurück zum Zitat Samir, I., Badra, N., Seadawy, A.R., Ahmed, H.M., Arnous, A.H.: Exact wave solutions of the fourth order non-linear partial differential equation of optical fiber pulses by using different methods. Optik 230, 166313 (2021)ADS Samir, I., Badra, N., Seadawy, A.R., Ahmed, H.M., Arnous, A.H.: Exact wave solutions of the fourth order non-linear partial differential equation of optical fiber pulses by using different methods. Optik 230, 166313 (2021)ADS
Zurück zum Zitat Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H.: Solitary wave solutions for generalized Boiti–Leon–Manna–Pempinelli equation by using improved simple equation method. Int. J. Appl. Comput. Math. 8(3), 102 (2022)MathSciNet Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H.: Solitary wave solutions for generalized Boiti–Leon–Manna–Pempinelli equation by using improved simple equation method. Int. J. Appl. Comput. Math. 8(3), 102 (2022)MathSciNet
Zurück zum Zitat Samir, I., Abd-Elmonem, A., Ahmed, H.M.: General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method. Opt. Quantum Electron. 55(5), 470 (2023a) Samir, I., Abd-Elmonem, A., Ahmed, H.M.: General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method. Opt. Quantum Electron. 55(5), 470 (2023a)
Zurück zum Zitat Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H., Ghanem, A.S.: Solitary wave solutions and other solutions for Gilson–Pickering equation by using the modified extended mapping method. Results Phys. 36, 105427 (2022) Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H., Ghanem, A.S.: Solitary wave solutions and other solutions for Gilson–Pickering equation by using the modified extended mapping method. Results Phys. 36, 105427 (2022)
Zurück zum Zitat Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H.: Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method. Commun. Nonlinear Sci. Numer. Simul. 102, 105945 (2021)MathSciNet Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H.: Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method. Commun. Nonlinear Sci. Numer. Simul. 102, 105945 (2021)MathSciNet
Zurück zum Zitat Sirendaoreji, N.: Unified Riccati equation expansion method and its application to two new classes of Benjamin–Bona–Mahony equations. Nonlinear Dyn. 89, 333–344 (2017)MathSciNet Sirendaoreji, N.: Unified Riccati equation expansion method and its application to two new classes of Benjamin–Bona–Mahony equations. Nonlinear Dyn. 89, 333–344 (2017)MathSciNet
Zurück zum Zitat Ulmer, W.: On the representation of atoms and molecules as self-interacting field with internal structure. Theor. Chim. Acta 55, 179–205 (1980) Ulmer, W.: On the representation of atoms and molecules as self-interacting field with internal structure. Theor. Chim. Acta 55, 179–205 (1980)
Zurück zum Zitat Velan, M.S., Lakshmanan, M.: Lie symmetries and invariant solutions of the shallow-water equation. Int. J. Non-Linear Mech. 31(3), 339–344 (1996)MathSciNet Velan, M.S., Lakshmanan, M.: Lie symmetries and invariant solutions of the shallow-water equation. Int. J. Non-Linear Mech. 31(3), 339–344 (1996)MathSciNet
Zurück zum Zitat Wang, R., Feng, Q., Ji, J.: The discrete convolution for fractional cosine–sine series and its application in convolution equations. AIMS Math. 9(2), 2641–2656 (2024)MathSciNet Wang, R., Feng, Q., Ji, J.: The discrete convolution for fractional cosine–sine series and its application in convolution equations. AIMS Math. 9(2), 2641–2656 (2024)MathSciNet
Zurück zum Zitat Wazwaz, A.-M., Kaur, L.: Complex simplified Hirota’s forms and lie symmetry analysis for multiple real and complex soliton solutions of the modified Kdv–Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019) Wazwaz, A.-M., Kaur, L.: Complex simplified Hirota’s forms and lie symmetry analysis for multiple real and complex soliton solutions of the modified Kdv–Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)
Zurück zum Zitat Wazwaz, A.-M., Kaur, L.: Optical solitons and peregrine solitons for nonlinear Schrödinger equation by variational iteration method. Optik 179, 804–809 (2019)ADS Wazwaz, A.-M., Kaur, L.: Optical solitons and peregrine solitons for nonlinear Schrödinger equation by variational iteration method. Optik 179, 804–809 (2019)ADS
Zurück zum Zitat Yang, R., Kai, Y.: Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrödinger equation in fiber Bragg gratings. Mod. Phys. Lett. B 38(06), 2350239 (2024)ADS Yang, R., Kai, Y.: Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrödinger equation in fiber Bragg gratings. Mod. Phys. Lett. B 38(06), 2350239 (2024)ADS
Zurück zum Zitat Yaşar, E.: New travelling wave solutions to the Ostrovsky equation. Appl. Math. Comput. 216(11), 3191–3194 (2010)MathSciNet Yaşar, E.: New travelling wave solutions to the Ostrovsky equation. Appl. Math. Comput. 216(11), 3191–3194 (2010)MathSciNet
Zurück zum Zitat Yaşar, E., Özer, T.: Invariant solutions and conservation laws to nonconservative FP equation. Comput. Math. Appl. 59(9), 3203–3210 (2010)MathSciNet Yaşar, E., Özer, T.: Invariant solutions and conservation laws to nonconservative FP equation. Comput. Math. Appl. 59(9), 3203–3210 (2010)MathSciNet
Zurück zum Zitat Yıldırım, Y., Yaşar, E.: A (2+ 1)-dimensional breaking soliton equation: solutions and conservation laws. Chaos Solitons Fractals 107, 146–155 (2018)ADSMathSciNet Yıldırım, Y., Yaşar, E.: A (2+ 1)-dimensional breaking soliton equation: solutions and conservation laws. Chaos Solitons Fractals 107, 146–155 (2018)ADSMathSciNet
Zurück zum Zitat Zayed, E.M., Gepreel, K.A., El-Horbaty, M.: Highly dispersive optical solitons in fiber Bragg gratings with stochastic perturbed Fokas–Lenells model having spatio-temporal dispersion and multiplicative white noise. Optik 286, 170975 (2023)ADS Zayed, E.M., Gepreel, K.A., El-Horbaty, M.: Highly dispersive optical solitons in fiber Bragg gratings with stochastic perturbed Fokas–Lenells model having spatio-temporal dispersion and multiplicative white noise. Optik 286, 170975 (2023)ADS
Metadaten
Titel
Examining the (1 + 1)-dimensional Schrödinger–Hirota equation with Kerr effect under inter-modal dispersion using the invariance theory
verfasst von
Handenur Esen
Aydin Secer
Mir Sajjad Hashemi
Muslum Ozisik
Mustafa Bayram
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06813-w

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt