Skip to main content
Erschienen in: Cellulose 2/2019

12.11.2018 | Original Paper

Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets

verfasst von: Wenwen Guo, Yixin Hu, Xin Wang, Ping Zhang, Lei Song, Weiyi Xing

Erschienen in: Cellulose | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lightweight bio-based foams from renewable cellulose nanofibers (CNF) and phosphorus-hybridized graphene nanosheets (PGN) were prepared by means of a simple freeze-drying process. By comparison, the CNF–Graphite, CNF–chemically reduced graphene nanosheets (CRG), CNF–red phosphorus (RP) composite foams were also fabricated. The CNF–PGN composite foam showed porous structures and the PGNs were uniformly distributed in the pore wall of the cellulose foams. The resultant CNF composite foams exhibited a thermal conductivity in the range of 0.0299–0.0310 W/(m K). The CNF–PGN composite foam exhibited a high char residue (25.6 wt%) at 800 °C, which was 205% higher than the calculated value, suggesting the excellent char formation ability. In the vertical burning tests, the CNF foam burnt out with rapid flame propagation, while the CNF–Graphite, CNF-RP and CNF–CRG composite foams cannot stop the smoldering behaviors. In contrast to these composite foams, the CNF–PGN composite foam displayed self-extinguishing behaviours and the flame spread was suppressed completely. Cone calorimeter measurements further manifested excellent fire retardancy of the CNF–PGN composite foam, which showed that the peak heat release rate was reduced to 14.6 kW/m2, lower than most of the reported by state-of-the-art flame retardant polymeric foams.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263CrossRef Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263CrossRef
Zurück zum Zitat Braun U, Schartel B (2004) Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol Chem Phys 205:2185–2196CrossRef Braun U, Schartel B (2004) Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol Chem Phys 205:2185–2196CrossRef
Zurück zum Zitat Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387CrossRef Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387CrossRef
Zurück zum Zitat De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
Zurück zum Zitat Fan BT, Chen SJ, Yao QF, Sun QF, Jin CD (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10:311CrossRefPubMedCentral Fan BT, Chen SJ, Yao QF, Sun QF, Jin CD (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10:311CrossRefPubMedCentral
Zurück zum Zitat Geng JX, Kong BS, Yang SB, Jung HT (2010) Preparation of graphene relying on porphyrin exfoliation of graphite. Chem Commun 46:5091–5093CrossRef Geng JX, Kong BS, Yang SB, Jung HT (2010) Preparation of graphene relying on porphyrin exfoliation of graphite. Chem Commun 46:5091–5093CrossRef
Zurück zum Zitat Guo WW, Wang X, Zhang P, Liu JJ, Song L, Hu Y (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym 195:71–78CrossRef Guo WW, Wang X, Zhang P, Liu JJ, Song L, Hu Y (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym 195:71–78CrossRef
Zurück zum Zitat Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859CrossRef Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859CrossRef
Zurück zum Zitat Hu XM, Zhao YY, Cheng WM (2015) Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature. Polym Compos 36:1531–1540CrossRef Hu XM, Zhao YY, Cheng WM (2015) Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature. Polym Compos 36:1531–1540CrossRef
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build 43:2549–2563CrossRef Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build 43:2549–2563CrossRef
Zurück zum Zitat Kang J, Wood JD, Wells SA, Lee JH, Liu XL, Chen KS, Hersam MC (2015) Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9:3596–3604CrossRefPubMed Kang J, Wood JD, Wells SA, Lee JH, Liu XL, Chen KS, Hersam MC (2015) Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9:3596–3604CrossRefPubMed
Zurück zum Zitat Kim MJ, Jean IY, Seo JM, Dai LM, Baek JB (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8:2820–2825CrossRefPubMed Kim MJ, Jean IY, Seo JM, Dai LM, Baek JB (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8:2820–2825CrossRefPubMed
Zurück zum Zitat Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY et al (2017) Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci 146:230–237CrossRef Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY et al (2017) Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci 146:230–237CrossRef
Zurück zum Zitat Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117CrossRef Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117CrossRef
Zurück zum Zitat Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364CrossRef Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364CrossRef
Zurück zum Zitat Liu Y, Wang Q (2006) Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stab 91:3103–3109CrossRef Liu Y, Wang Q (2006) Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stab 91:3103–3109CrossRef
Zurück zum Zitat Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B et al (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stab 98:2366–2374CrossRef Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B et al (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stab 98:2366–2374CrossRef
Zurück zum Zitat Schartel B, Perret B, Dittrich B, Ciesielski M, Kraemer J, Mueller P et al (2016) Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol Mater Eng 301:9–35CrossRef Schartel B, Perret B, Dittrich B, Ciesielski M, Kraemer J, Mueller P et al (2016) Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol Mater Eng 301:9–35CrossRef
Zurück zum Zitat Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942CrossRef Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942CrossRef
Zurück zum Zitat Some S, Shackery I, Kim SJ, Jun SC (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem Eur J 21:15480–15485CrossRefPubMed Some S, Shackery I, Kim SJ, Jun SC (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem Eur J 21:15480–15485CrossRefPubMed
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
Zurück zum Zitat Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108:1810–1817CrossRef Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) Effect of foam density on the properties of water blown rigid polyurethane foam. J Appl Polym Sci 108:1810–1817CrossRef
Zurück zum Zitat Wang L, Sanchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5:31384–31391CrossRef Wang L, Sanchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5:31384–31391CrossRef
Zurück zum Zitat Wang X, Hu Y, Song L, Yang HY, Xing WY, Lu HD (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227CrossRef Wang X, Hu Y, Song L, Yang HY, Xing WY, Lu HD (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227CrossRef
Zurück zum Zitat Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46CrossRef Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46CrossRef
Zurück zum Zitat Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283CrossRefPubMed Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283CrossRefPubMed
Zurück zum Zitat Wicklein B, Kocjan D, Carosio F, Camino G, Bergstrom L (2016) Tuning the nanocellulose–borate interaction to achieve highly flame retardant hybrid materials. Chem Mater 28:1985–1989CrossRef Wicklein B, Kocjan D, Carosio F, Camino G, Bergstrom L (2016) Tuning the nanocellulose–borate interaction to achieve highly flame retardant hybrid materials. Chem Mater 28:1985–1989CrossRef
Zurück zum Zitat Wu Q, Lu JP, Qu BJ (2003) Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int 52:1326–1331CrossRef Wu Q, Lu JP, Qu BJ (2003) Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int 52:1326–1331CrossRef
Zurück zum Zitat Xie HY, Ye Q, Si JY, Yang W, Lu HD, Zhang QZ (2016) Synthesis of a carbon nanotubes/ZnAl-layered double hydroxide composite as a novel flame retardant for flexible polyurethane foams. Polym Adv Technol 27:651–656CrossRef Xie HY, Ye Q, Si JY, Yang W, Lu HD, Zhang QZ (2016) Synthesis of a carbon nanotubes/ZnAl-layered double hydroxide composite as a novel flame retardant for flexible polyurethane foams. Polym Adv Technol 27:651–656CrossRef
Zurück zum Zitat Yan DX, Xu L, Chen C, Tang JH, Ji X, Li ZM (2012) Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym Int 61:1107–1114CrossRef Yan DX, Xu L, Chen C, Tang JH, Ji X, Li ZM (2012) Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym Int 61:1107–1114CrossRef
Zurück zum Zitat Yang X, Shi KY, Zhitomirsky I, Cranston ED (2015a) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109CrossRefPubMed Yang X, Shi KY, Zhitomirsky I, Cranston ED (2015a) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109CrossRefPubMed
Zurück zum Zitat Yang W, Jia ZJ, Chen YN, Zhang YR, Si JY, Yang BH et al (2015b) Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite thermal degradation, flame retardancy and mechanical properties. RSC Adv 5:105869–105879CrossRef Yang W, Jia ZJ, Chen YN, Zhang YR, Si JY, Yang BH et al (2015b) Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite thermal degradation, flame retardancy and mechanical properties. RSC Adv 5:105869–105879CrossRef
Zurück zum Zitat Yang W, Zhang YR, Yuen ACY, Chen TBY, Chan MC, Peng LZ et al (2017) Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem Eng J 321:257–267CrossRef Yang W, Zhang YR, Yuen ACY, Chen TBY, Chan MC, Peng LZ et al (2017) Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem Eng J 321:257–267CrossRef
Zurück zum Zitat Yuan B, Zhang JM, Yu J, Song R, Mi QY, He JS et al (2016) Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci China Chem 59:1335–1341CrossRef Yuan B, Zhang JM, Yu J, Song R, Mi QY, He JS et al (2016) Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci China Chem 59:1335–1341CrossRef
Zurück zum Zitat Zhang JH, Kong QH, Yang LW, Wang DY (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18:3066–3074CrossRef Zhang JH, Kong QH, Yang LW, Wang DY (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18:3066–3074CrossRef
Metadaten
Titel
Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets
verfasst von
Wenwen Guo
Yixin Hu
Xin Wang
Ping Zhang
Lei Song
Weiyi Xing
Publikationsdatum
12.11.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2127-2

Weitere Artikel der Ausgabe 2/2019

Cellulose 2/2019 Zur Ausgabe