Skip to main content
Erschienen in: Journal of Materials Science 19/2017

27.06.2017 | Ceramics

Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach

verfasst von: Shivani Sharma, Shubham Bhagat, Jasvir Singh, Ravi Chand Singh, Sandeep Sharma

Erschienen in: Journal of Materials Science | Ausgabe 19/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Crystalline and hetero-dimensional nanostructures of WS2 quantum dots and a few layered sheets have been successfully synthesized in a single-step process using liquid exfoliation in deionized water. The X-rays diffraction analysis confirmed the presence of hexagonal as well as tetragonal phase of WS2 in quantum dots. The nanostructures so obtained exhibit strong photoluminescence, which is otherwise difficult to detect (due to low quantum yield) when WS2 is in bulk form. The UV–Vis spectra from these nanostructures display strong excitonic absorptions together with band edge absorption at ≈5.1 eV, sufficiently larger than the indirect band gap (≈1.3 eV) of bulk WS2. The average statistical size distribution of quantum dots was found to be 3–4.5 nm and corresponds to a band gap of 6 and 3.4 eV, respectively, under effective mass approximation. Further, the photoluminescence spectra shifts with the excitation wavelength, a signature of size-dependent photoluminescence emission from these nanostructures. These results suggest that quantum confinement effects together with band gap transformation from indirect to direct, not only shift the band edge in the ultraviolet region but also give rise to enhancement in the photoluminescence emission.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
2.
Zurück zum Zitat Wang QH, Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition-metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef Wang QH, Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition-metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef
3.
Zurück zum Zitat Matthew JA, Vincent CT, Richard BK (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Matthew JA, Vincent CT, Richard BK (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
4.
Zurück zum Zitat Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71CrossRef Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71CrossRef
5.
Zurück zum Zitat Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulphide. Phys Rev B 83:245213CrossRef Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulphide. Phys Rev B 83:245213CrossRef
6.
Zurück zum Zitat Pandey K, Yadav P, Singh D, Gupta SK, Sonvane Y, Lukaacevic I, Kim J, Kumar M (2016) First step to investigate nature of electronic states and transport in flower-like MoS2: combining experimental studies with computational calculations. Sci Rep 6:32690CrossRef Pandey K, Yadav P, Singh D, Gupta SK, Sonvane Y, Lukaacevic I, Kim J, Kumar M (2016) First step to investigate nature of electronic states and transport in flower-like MoS2: combining experimental studies with computational calculations. Sci Rep 6:32690CrossRef
7.
Zurück zum Zitat Dankert A, Langouche L, Kamalakar MV, Dash SP (2014) High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8:476CrossRef Dankert A, Langouche L, Kamalakar MV, Dash SP (2014) High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8:476CrossRef
8.
Zurück zum Zitat Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef
9.
Zurück zum Zitat Splendiani A, Sun L, Zhang Y, Li T, Kim J, Jonghwan Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRef Splendiani A, Sun L, Zhang Y, Li T, Kim J, Jonghwan Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRef
10.
Zurück zum Zitat Bromley RA, Murray RB, Yoffe AD (1972) The band structures of some transition metal dichalcogenides III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5:759CrossRef Bromley RA, Murray RB, Yoffe AD (1972) The band structures of some transition metal dichalcogenides III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5:759CrossRef
11.
Zurück zum Zitat Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang CD, Gu Z, Zhao Y (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for In-vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9:12451–12463CrossRef Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang CD, Gu Z, Zhao Y (2015) Tungsten sulfide quantum dots as multifunctional nanotheranostics for In-vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 9:12451–12463CrossRef
12.
Zurück zum Zitat Gan ZX, Liu LZ, Wu HY, Hao YL, Shan Y, Wu XL, Chu PK (2015) Quantum confinement effects across two-dimensional planes in MoS2 quantum dots. Appl Phys Lett 106:233113CrossRef Gan ZX, Liu LZ, Wu HY, Hao YL, Shan Y, Wu XL, Chu PK (2015) Quantum confinement effects across two-dimensional planes in MoS2 quantum dots. Appl Phys Lett 106:233113CrossRef
13.
Zurück zum Zitat Stengl V, Henych J (2013) Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale 5:3387–3394CrossRef Stengl V, Henych J (2013) Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale 5:3387–3394CrossRef
14.
Zurück zum Zitat Velusamy DB, Kim RH, Cha S, Huh J, Khazaeinezhad R, Kassani SH, Song G, Cho SM, Cho SH, Hwang I, Lee J, Oh K, Choi H, Park C (2015) Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat Commun 6:8063CrossRef Velusamy DB, Kim RH, Cha S, Huh J, Khazaeinezhad R, Kassani SH, Song G, Cho SM, Cho SH, Hwang I, Lee J, Oh K, Choi H, Park C (2015) Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat Commun 6:8063CrossRef
15.
Zurück zum Zitat Lin L, Xu Y, Zhang S, Ross IM, Ong ACM, Allwood DA (2013) Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 7:8214–8223CrossRef Lin L, Xu Y, Zhang S, Ross IM, Ong ACM, Allwood DA (2013) Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 7:8214–8223CrossRef
16.
Zurück zum Zitat Mukherjee S, Maiti R, Midya A, Das S, Ray SK (2015) Tunable direct bandgap optical transitions in MoS2 nanocrystals for photonic devices. ACS Photon 2:760–768CrossRef Mukherjee S, Maiti R, Midya A, Das S, Ray SK (2015) Tunable direct bandgap optical transitions in MoS2 nanocrystals for photonic devices. ACS Photon 2:760–768CrossRef
17.
Zurück zum Zitat Ghorai A, Bayan S, Gogurla N, Midya A, Ray SK (2017) Highly luminescent WS2 Quantum Dots/ZnO heterojunctions for light emitting devices. ACS Appl Mater Interfaces 9:558–565CrossRef Ghorai A, Bayan S, Gogurla N, Midya A, Ray SK (2017) Highly luminescent WS2 Quantum Dots/ZnO heterojunctions for light emitting devices. ACS Appl Mater Interfaces 9:558–565CrossRef
18.
Zurück zum Zitat Midya A, Ghorai A, Mukherjee S, Maiti R, Ray SK (2016) Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. J Mater Chem A 4:4534–4543CrossRef Midya A, Ghorai A, Mukherjee S, Maiti R, Ray SK (2016) Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. J Mater Chem A 4:4534–4543CrossRef
19.
Zurück zum Zitat Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Nano Lett 11:5111CrossRef Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Nano Lett 11:5111CrossRef
20.
Zurück zum Zitat Ghorai A, Midya A, Maiti R, Ray SK (2016) Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation. Dalton Trans 45:14979–14987CrossRef Ghorai A, Midya A, Maiti R, Ray SK (2016) Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation. Dalton Trans 45:14979–14987CrossRef
21.
Zurück zum Zitat Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10:2159–2166CrossRef Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10:2159–2166CrossRef
22.
Zurück zum Zitat Kang J, Li J, Li SS, Xia JB, Wang LW (2013) Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett 13:5485–5490CrossRef Kang J, Li J, Li SS, Xia JB, Wang LW (2013) Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett 13:5485–5490CrossRef
23.
Zurück zum Zitat Berkdemir A, Gutierrez HR, Botello-Mendez AR et al (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1755CrossRef Berkdemir A, Gutierrez HR, Botello-Mendez AR et al (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1755CrossRef
24.
Zurück zum Zitat Zhao W, Ghorannevis Z, Amara KK et al (2013) Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5:9677–9683CrossRef Zhao W, Ghorannevis Z, Amara KK et al (2013) Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5:9677–9683CrossRef
25.
Zurück zum Zitat Hill HM, Rigosi AF, Roquelet C, Chernikov A, Berkelbach TC, Reichman DR, Hybertsen MS, Brus LE, Heinz TF, Tony F (2015) Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15:992–2997CrossRef Hill HM, Rigosi AF, Roquelet C, Chernikov A, Berkelbach TC, Reichman DR, Hybertsen MS, Brus LE, Heinz TF, Tony F (2015) Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15:992–2997CrossRef
26.
Zurück zum Zitat Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409CrossRef Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409CrossRef
27.
Zurück zum Zitat Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G (2013) Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7:791–797CrossRef Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G (2013) Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7:791–797CrossRef
28.
Zurück zum Zitat Wilcoxon JP, Samara GA (1995) Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters. Phys Rev B 51:7299–7302CrossRef Wilcoxon JP, Samara GA (1995) Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters. Phys Rev B 51:7299–7302CrossRef
29.
Zurück zum Zitat Wilcoxon JP, Newcomer PP, Samara GA (1997) Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys 81:7934–7944CrossRef Wilcoxon JP, Newcomer PP, Samara GA (1997) Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys 81:7934–7944CrossRef
30.
Zurück zum Zitat Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef
31.
Zurück zum Zitat Qiu DY, da Jornada FH, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:216805CrossRef Qiu DY, da Jornada FH, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:216805CrossRef
32.
Zurück zum Zitat Chikan V, Kelley DF (2002) Size-dependent spectroscopy of MoS2 nanoclusters. J Phys Chem B 106:3794–3804CrossRef Chikan V, Kelley DF (2002) Size-dependent spectroscopy of MoS2 nanoclusters. J Phys Chem B 106:3794–3804CrossRef
33.
Zurück zum Zitat He K, Kumar N, Zhao L, Wang Z, Mak KF, Zhao H, Shan J (2014) Tightly bound excitons in monolayer WSe2. Phys Rev Lett 113:026803CrossRef He K, Kumar N, Zhao L, Wang Z, Mak KF, Zhao H, Shan J (2014) Tightly bound excitons in monolayer WSe2. Phys Rev Lett 113:026803CrossRef
34.
Zurück zum Zitat Feng DH, Xu ZZ, Jia TQ, Li XX, Gong SQ (2003) Quantum size effects on exciton states in indirect-gap quantum dots. Phys Rev B 68:035334CrossRef Feng DH, Xu ZZ, Jia TQ, Li XX, Gong SQ (2003) Quantum size effects on exciton states in indirect-gap quantum dots. Phys Rev B 68:035334CrossRef
35.
Zurück zum Zitat Chang J, Register LF, Banerjee SK (2014) Ballistic performance comparison of monolayer transition metal dichalcogenide MX2(M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors. J Appl Phys 115:084506CrossRef Chang J, Register LF, Banerjee SK (2014) Ballistic performance comparison of monolayer transition metal dichalcogenide MX2(M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors. J Appl Phys 115:084506CrossRef
36.
Zurück zum Zitat Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE TED 58:3042–3047CrossRef Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE TED 58:3042–3047CrossRef
37.
Zurück zum Zitat Liang L, Meunier V (2014) First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6:5394–5401CrossRef Liang L, Meunier V (2014) First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6:5394–5401CrossRef
38.
Zurück zum Zitat Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK (2005) Experimental evidence for the quantum confinement Effect in 3C-SiC nanocrystallites. Phys Rev Lett 94:026102CrossRef Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK (2005) Experimental evidence for the quantum confinement Effect in 3C-SiC nanocrystallites. Phys Rev Lett 94:026102CrossRef
39.
Zurück zum Zitat Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 Quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8(5):5297–5303CrossRef Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 Quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8(5):5297–5303CrossRef
40.
Zurück zum Zitat Bao L, Zhang ZL, Tian ZQ et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescent mechanism. Adv Mater 23:5801–5806CrossRef Bao L, Zhang ZL, Tian ZQ et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescent mechanism. Adv Mater 23:5801–5806CrossRef
41.
Zurück zum Zitat Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528CrossRef Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528CrossRef
Metadaten
Titel
Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach
verfasst von
Shivani Sharma
Shubham Bhagat
Jasvir Singh
Ravi Chand Singh
Sandeep Sharma
Publikationsdatum
27.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1303-3

Weitere Artikel der Ausgabe 19/2017

Journal of Materials Science 19/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.