Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2020

11.01.2020 | ORIGINAL ARTICLE

Experimental analysis and modeling of friction in sheet metal forming considering the influence of drawbeads

verfasst von: Salvatore Leocata, Thomas Senner, Helga Reith, Alexander Brosius

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In sheet metal forming of automotive body parts, high quality standards are achieved by designing the material flow in the blankholder area. To reduce time and cost of the tool development, virtual methods are commonly used. Therefore, an accurate friction modeling is necessary to predict the material flow in the blankholder area correctly. The blankholder of industrial forming tools usually consists of a drawbead and an area with surface pressure. In this study, the influence of the drawbead on the friction is analyzed experimentally and considered in the simulation. The friction coefficient is determined before and after the drawbead pass in dependence of the normal pressure. A flattening of the surface peaks due to surface pressure and a roughening due to plastic strain are found as the main influencing factors on the friction after drawbead pass. In the simulation the friction is modeled based on the experimental results employing an enhanced method considering the influence of the drawbead. These modeling approaches are compared with the friction model of the commercial software TriboForm and the experimental results. For this purpose, the predictive accuracy of the restraining force of a drawbead with different pressure distributions on the blankholder is evaluated using a strip tensile test. This evaluation is further carried out for a different strain state at a cup drawing test. By considering the influence of the drawbead on the friction coefficient a significant increase in the predictive accuracy of the simulation can be achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roll K (2011) Application of virtual methods in automotive industry. In: Kolleck RH (ed) Tools and technologies for processing ultra high strength materials. Verlag der Technischen Universität Graz, pp 81–86 Roll K (2011) Application of virtual methods in automotive industry. In: Kolleck RH (ed) Tools and technologies for processing ultra high strength materials. Verlag der Technischen Universität Graz, pp 81–86
2.
Zurück zum Zitat Hol J, Cid Alfaro MV, de Rooij MB, Meinders T (2012) Advanced friction modeling for sheet metal forming. Wear 286-287:66–78CrossRef Hol J, Cid Alfaro MV, de Rooij MB, Meinders T (2012) Advanced friction modeling for sheet metal forming. Wear 286-287:66–78CrossRef
3.
Zurück zum Zitat Nielsen CV, Bay N (2018) Review of friction modeling in metal forming processes. J Mater Process Technol 255:234–241CrossRef Nielsen CV, Bay N (2018) Review of friction modeling in metal forming processes. J Mater Process Technol 255:234–241CrossRef
4.
Zurück zum Zitat Wang W, Zhao Y, Wang Z, Hua M, Wei X (2016) A study on variable friction model in sheet metal forming with advanced high strength steels. Tribol Int 93:17–28CrossRef Wang W, Zhao Y, Wang Z, Hua M, Wei X (2016) A study on variable friction model in sheet metal forming with advanced high strength steels. Tribol Int 93:17–28CrossRef
5.
Zurück zum Zitat Sigvant M, Hol J, Chezan T, van den Boogaard T (2015) Friction modelling in sheet metal forming simulations: application and validation on an u-bend product. In: Hora P (ed) Advanced constitutive models in sheet metal forming. Institute of Virtual Manufacturing, pp 135–142 Sigvant M, Hol J, Chezan T, van den Boogaard T (2015) Friction modelling in sheet metal forming simulations: application and validation on an u-bend product. In: Hora P (ed) Advanced constitutive models in sheet metal forming. Institute of Virtual Manufacturing, pp 135–142
6.
Zurück zum Zitat Zöller F, Sturm V, Merklein M (2015) Experimental and numerical investigation on a pressure dependent friction model. Key Eng Mater 639:403–410CrossRef Zöller F, Sturm V, Merklein M (2015) Experimental and numerical investigation on a pressure dependent friction model. Key Eng Mater 639:403–410CrossRef
7.
Zurück zum Zitat Grüebler R, Hora P (2009) Temperature dependent friction modeling for sheet metal forming. Int J Mater Form 2:251–254CrossRef Grüebler R, Hora P (2009) Temperature dependent friction modeling for sheet metal forming. Int J Mater Form 2:251–254CrossRef
8.
Zurück zum Zitat Tamai Y, Inazumi T, Manabe K (2016) Fe forming analysis with nonlinear friction coefficient model considering contact pressure, sliding velocity and sliding length. J Mater Process Technol 227:161–168CrossRef Tamai Y, Inazumi T, Manabe K (2016) Fe forming analysis with nonlinear friction coefficient model considering contact pressure, sliding velocity and sliding length. J Mater Process Technol 227:161–168CrossRef
9.
Zurück zum Zitat Hol J (2013) Multi-scale friction modeling for sheet metal forming. University of Twente Hol J (2013) Multi-scale friction modeling for sheet metal forming. University of Twente
10.
Zurück zum Zitat 230-213 VDA (2008) Test procedures for the product classes: Prelube, prelube 2, hotmelt spot lubricant 230-213 VDA (2008) Test procedures for the product classes: Prelube, prelube 2, hotmelt spot lubricant
11.
Zurück zum Zitat Filzek J, Groche P (2001) Assessment of the tribological function of lubricants for sheet metal forming. In: Totten GE, Wedeven LD, Dickey JR, Anderson M (eds) Bench testing of industrial fluid lubrication and wear properties used in machinery applications. ASTM STP 1404, pp 97–108 Filzek J, Groche P (2001) Assessment of the tribological function of lubricants for sheet metal forming. In: Totten GE, Wedeven LD, Dickey JR, Anderson M (eds) Bench testing of industrial fluid lubrication and wear properties used in machinery applications. ASTM STP 1404, pp 97–108
12.
Zurück zum Zitat Filzek J, Ludwig M, Groche P (2011) Improved FEM simulation of sheet metal forming with friction modelling using laboratory tests. Proceedings of the IDDRG Filzek J, Ludwig M, Groche P (2011) Improved FEM simulation of sheet metal forming with friction modelling using laboratory tests. Proceedings of the IDDRG
13.
Zurück zum Zitat Liu X, Liewald M, Becker D (2009) Effects of rolling direction and lubricant on friction in sheet metal forming. J Tribol 131(4):042101CrossRef Liu X, Liewald M, Becker D (2009) Effects of rolling direction and lubricant on friction in sheet metal forming. J Tribol 131(4):042101CrossRef
14.
Zurück zum Zitat Merklein M, Zöller F, Sturm V (2014) Experimental and numerical investigations on frictional behaviour under consideration of varying tribological conditions. Adv Mater Res 966:270–278CrossRef Merklein M, Zöller F, Sturm V (2014) Experimental and numerical investigations on frictional behaviour under consideration of varying tribological conditions. Adv Mater Res 966:270–278CrossRef
15.
Zurück zum Zitat Merklein M, Andreas K, Steiner J (2015) Influence of tool surface on tribological conditions in conventional and dry sheet metal forming. Int J Precis Eng Manuf-Green Technol 2(2):131–137CrossRef Merklein M, Andreas K, Steiner J (2015) Influence of tool surface on tribological conditions in conventional and dry sheet metal forming. Int J Precis Eng Manuf-Green Technol 2(2):131–137CrossRef
16.
Zurück zum Zitat Zhou R, Cao J, Wang QJ, Meng F, Zimowski K, Xia ZC (2011) Effect of EDT surface texturing on tribological behavior of aluminum sheet. J Mater Process Technol 211(10):1643–1649CrossRef Zhou R, Cao J, Wang QJ, Meng F, Zimowski K, Xia ZC (2011) Effect of EDT surface texturing on tribological behavior of aluminum sheet. J Mater Process Technol 211(10):1643–1649CrossRef
17.
Zurück zum Zitat Lee BH, Keum YT, Wagoner RH (2002) Modeling of the friction caused by lubrication and surface roughness in sheet metal forming. J Mater Process Technol 130:60–63CrossRef Lee BH, Keum YT, Wagoner RH (2002) Modeling of the friction caused by lubrication and surface roughness in sheet metal forming. J Mater Process Technol 130:60–63CrossRef
18.
Zurück zum Zitat Payen GR, Felder E, Repoux M, Mataigne JM (2012) Influence of contact pressure and boundary films on the frictional behaviour and on the roughness changes of galvanized steel sheets. Wear 276–277:48–52CrossRef Payen GR, Felder E, Repoux M, Mataigne JM (2012) Influence of contact pressure and boundary films on the frictional behaviour and on the roughness changes of galvanized steel sheets. Wear 276–277:48–52CrossRef
19.
Zurück zum Zitat Karupannasamy DK, de Rooij MB, Schipper DJ (2013) Multi-scale friction modelling for rough contacts under sliding conditions. Wear 308(1–2):222–231CrossRef Karupannasamy DK, de Rooij MB, Schipper DJ (2013) Multi-scale friction modelling for rough contacts under sliding conditions. Wear 308(1–2):222–231CrossRef
20.
Zurück zum Zitat Saha PK, Wilson WR (1994) Influence of plastic strain on friction in sheet metal forming. Wear 172 (2):167–173CrossRef Saha PK, Wilson WR (1994) Influence of plastic strain on friction in sheet metal forming. Wear 172 (2):167–173CrossRef
21.
Zurück zum Zitat Lucachick GA, Sanchez LR (2013) Surface topography changes in aluminum alloy sheet during large plastic straining under cyclic pure bending. J Mater Process Technol 213(2):300–307CrossRef Lucachick GA, Sanchez LR (2013) Surface topography changes in aluminum alloy sheet during large plastic straining under cyclic pure bending. J Mater Process Technol 213(2):300–307CrossRef
22.
Zurück zum Zitat Azushima A, Sakuramoto M (2006) Effects of plastic strain on surface roughness and coefficient of friction in tension-bending test. CIRP Ann 55(1):303–306CrossRef Azushima A, Sakuramoto M (2006) Effects of plastic strain on surface roughness and coefficient of friction in tension-bending test. CIRP Ann 55(1):303–306CrossRef
23.
Zurück zum Zitat Sanchez LR, Hartfield-Wunsch S (2011) Effects on surface roughness and friction on aluminum sheet under plain strain cyclic bending and tension. SAE Int J Mater Manuf 4(1):826–834CrossRef Sanchez LR, Hartfield-Wunsch S (2011) Effects on surface roughness and friction on aluminum sheet under plain strain cyclic bending and tension. SAE Int J Mater Manuf 4(1):826–834CrossRef
24.
Zurück zum Zitat Leocata S, Senner T, Saubiez JM, Brosius A (2019) Influence of binder pressure zones on the robustness of restraining forces in sheet metal forming. Procedia Manuf 29:209–216CrossRef Leocata S, Senner T, Saubiez JM, Brosius A (2019) Influence of binder pressure zones on the robustness of restraining forces in sheet metal forming. Procedia Manuf 29:209–216CrossRef
26.
Zurück zum Zitat Larsson M (2009) Computational characterization of drawbeads: a basic modeling method for data generation. J Mater Process Technol 209(1):376–386CrossRef Larsson M (2009) Computational characterization of drawbeads: a basic modeling method for data generation. J Mater Process Technol 209(1):376–386CrossRef
27.
Zurück zum Zitat Heinle I (2012) Application of evolutionary strategies to industrial forming simulations for the identification and validation of constitutive laws. University Leiden Heinle I (2012) Application of evolutionary strategies to industrial forming simulations for the identification and validation of constitutive laws. University Leiden
28.
Zurück zum Zitat Yoon JW, Barlat F (2006) Modeling and simulation of the forming of aluminum sheet alloys. In: Metalworking: sheet forming. ASM International Yoon JW, Barlat F (2006) Modeling and simulation of the forming of aluminum sheet alloys. In: Metalworking: sheet forming. ASM International
29.
Zurück zum Zitat Jung J, Jun S, Lee HS, Kim BM, Lee MG, Kim J (2017) Anisotropic hardening behaviour and springback of advanced high-strength steels. Metals 7(11):480CrossRef Jung J, Jun S, Lee HS, Kim BM, Lee MG, Kim J (2017) Anisotropic hardening behaviour and springback of advanced high-strength steels. Metals 7(11):480CrossRef
30.
Zurück zum Zitat Taherizadeh A, Green DE, Yoon JW (2015) A non-associated plasticity model with anisotropic and nonlinear kinematic hardening for simulation of sheet metal forming. Int J Solids Struct 69-70:370–382CrossRef Taherizadeh A, Green DE, Yoon JW (2015) A non-associated plasticity model with anisotropic and nonlinear kinematic hardening for simulation of sheet metal forming. Int J Solids Struct 69-70:370–382CrossRef
31.
Zurück zum Zitat Yoshida F, Hamasaki H, Uemori T (2014) A model of anisotropy evolution of sheet metals. Procedia Eng 81:1216–1221. 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, JapanCrossRef Yoshida F, Hamasaki H, Uemori T (2014) A model of anisotropy evolution of sheet metals. Procedia Eng 81:1216–1221. 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, JapanCrossRef
32.
Zurück zum Zitat ISO 25178-2:2012: Geometrical product specifications. Surface texture: Areal–Part 2: Terms, definitions and surface texture parameters (2012) ISO 25178-2:2012: Geometrical product specifications. Surface texture: Areal–Part 2: Terms, definitions and surface texture parameters (2012)
33.
Zurück zum Zitat Pfestorf M, Engel U, Geiger M (1998) Three-dimensional characterization of surfaces for sheet metal forming. Wear 216(2):244–250CrossRef Pfestorf M, Engel U, Geiger M (1998) Three-dimensional characterization of surfaces for sheet metal forming. Wear 216(2):244–250CrossRef
34.
Zurück zum Zitat Wilson WR, Sheu S (1988) Real area of contact and boundary friction in metal forming. Int J Mech Sci 30(7):475–489CrossRef Wilson WR, Sheu S (1988) Real area of contact and boundary friction in metal forming. Int J Mech Sci 30(7):475–489CrossRef
Metadaten
Titel
Experimental analysis and modeling of friction in sheet metal forming considering the influence of drawbeads
verfasst von
Salvatore Leocata
Thomas Senner
Helga Reith
Alexander Brosius
Publikationsdatum
11.01.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04847-z

Weitere Artikel der Ausgabe 9-10/2020

The International Journal of Advanced Manufacturing Technology 9-10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.