Skip to main content
Erschienen in: Metallography, Microstructure, and Analysis 1/2017

12.01.2017 | Technical Article

Experimental and XFEM Simulation of Tensile and Fracture Behavior of Al 6061 Alloy Processed by Severe Plastic Deformation

verfasst von: Vasanth Balakrishnan, P. Roshan, Sunkulp Goel, R. Jayaganthan, I. V. Singh

Erschienen in: Metallography, Microstructure, and Analysis | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The tensile and fracture behavior of ultrafine-grained Al 6061 alloy has been studied by experimental testing and extended finite element method simulation. The ultrafine-grained alloy processed by cryorolling has been produced from its bulk alloy with different thickness reductions. Microstructural features have been evaluated by electron backscattered diffraction. The EBSD results show the formation of subgrains and large number of high-angle grain boundaries in the rolled Al alloy. Mechanical behavior has been investigated using microhardness, tensile test, fracture toughness, and fractography of all samples. The extended finite element method has been used to investigate elastic–plastic deformation behavior of ultrafine-grained Al 6061 alloy. The extended finite element method has been used to simulate tensile and fracture behavior of ultrafine-grained alloy with material constants evaluated from experimentally measured tensile properties. Simulated tensile and fracture properties are in tandem with the experimental results. Ultrafine-grained Al 6061 alloy has shown better tensile strength and fracture toughness as evident from experimental and simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Hirsch, Recent development in aluminum for automotive applications. Trans. Nonferrous Metals Soc. China 24(7), 1995–2002 (2014)CrossRef J. Hirsch, Recent development in aluminum for automotive applications. Trans. Nonferrous Metals Soc. China 24(7), 1995–2002 (2014)CrossRef
2.
Zurück zum Zitat W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37–49 (2000)CrossRef W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37–49 (2000)CrossRef
3.
Zurück zum Zitat G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation. Philos. Mag. Lett. 85, 459–466 (2008)CrossRef G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation. Philos. Mag. Lett. 85, 459–466 (2008)CrossRef
4.
Zurück zum Zitat L.P. Troeger, E.A. Starke Jr., Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater. Sci. Eng., A 277, 102–113 (2000)CrossRef L.P. Troeger, E.A. Starke Jr., Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater. Sci. Eng., A 277, 102–113 (2000)CrossRef
5.
Zurück zum Zitat Dursun Tolga, Soutis Costas, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)CrossRef Dursun Tolga, Soutis Costas, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)CrossRef
6.
Zurück zum Zitat K.S. Raju, M.G. Krishna, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao, G. Wilde, Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel. Mater. Sci. Eng., A 491, 1–7 (2008)CrossRef K.S. Raju, M.G. Krishna, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao, G. Wilde, Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel. Mater. Sci. Eng., A 491, 1–7 (2008)CrossRef
7.
Zurück zum Zitat D.M. Jafarlou, E. Zalnezhad, M.A. Hassan, M.A. Ezazi, N.A. Mardi, A.M.S. Hamouda, M. Hamdi, G.H. Yoon, Mater. Des. 90, 1124–1135 (2016) D.M. Jafarlou, E. Zalnezhad, M.A. Hassan, M.A. Ezazi, N.A. Mardi, A.M.S. Hamouda, M. Hamdi, G.H. Yoon, Mater. Des. 90, 1124–1135 (2016)
8.
Zurück zum Zitat A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov, Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53(8), 2181–2191 (2005)CrossRef A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov, Effect of strain path on structure and mechanical behavior of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53(8), 2181–2191 (2005)CrossRef
9.
Zurück zum Zitat H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets. Acta Mater. 53, 1737–1749 (2005)CrossRef H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets. Acta Mater. 53, 1737–1749 (2005)CrossRef
10.
Zurück zum Zitat N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum. Acta Mater. 54, 3055–3066 (2006)CrossRef N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum. Acta Mater. 54, 3055–3066 (2006)CrossRef
11.
Zurück zum Zitat S. Roy, S. Singh, S. Suwas, S. Kumar, K. Chattopadhyay, Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086. Mater. Sci. Eng., A 528, 8469–8478 (2011)CrossRef S. Roy, S. Singh, S. Suwas, S. Kumar, K. Chattopadhyay, Microstructure and texture evolution during accumulative roll bonding of aluminium alloy AA5086. Mater. Sci. Eng., A 528, 8469–8478 (2011)CrossRef
12.
Zurück zum Zitat L. Su, C. Lu, H. Li, G. Deng, K. Tieu, Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding. Mater. Sci. Eng., A 614, 148–155 (2014)CrossRef L. Su, C. Lu, H. Li, G. Deng, K. Tieu, Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding. Mater. Sci. Eng., A 614, 148–155 (2014)CrossRef
13.
Zurück zum Zitat M. Karlik, P. Homola, M. Slámováb, Accumulative roll-bonding: first experience with a twin-roll cast AA8006 alloy. J. Alloy. Compd. 378, 322–325 (2004)CrossRef M. Karlik, P. Homola, M. Slámováb, Accumulative roll-bonding: first experience with a twin-roll cast AA8006 alloy. J. Alloy. Compd. 378, 322–325 (2004)CrossRef
14.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding. Mater. Sci. Eng., A 527(16–17), 4146–4151 (2010)CrossRef R. Jamaati, M.R. Toroghinejad, Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding. Mater. Sci. Eng., A 527(16–17), 4146–4151 (2010)CrossRef
15.
Zurück zum Zitat X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high pressure torsion. J. Appl. Phys. 96, 636–640 (2004)CrossRef X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high pressure torsion. J. Appl. Phys. 96, 636–640 (2004)CrossRef
16.
Zurück zum Zitat Edalati Kaveh, Horita Zenji, A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325–362 (2016)CrossRef Edalati Kaveh, Horita Zenji, A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng., A 652, 325–362 (2016)CrossRef
17.
Zurück zum Zitat I. Sabirov, R. Pippan, Formation a nanostructure in a W–25%Cu during high pressure torsion. Scr. Mater. 52, 1293–1298 (2005)CrossRef I. Sabirov, R. Pippan, Formation a nanostructure in a W–25%Cu during high pressure torsion. Scr. Mater. 52, 1293–1298 (2005)CrossRef
18.
Zurück zum Zitat M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S. Ghosh, Pal T.K. Chowdhury, Microstructures and mechanical properties of HPT processed 6063 Al alloy. Mater. Sci. Eng., A 558, 525–532 (2012)CrossRef M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S. Ghosh, Pal T.K. Chowdhury, Microstructures and mechanical properties of HPT processed 6063 Al alloy. Mater. Sci. Eng., A 558, 525–532 (2012)CrossRef
19.
Zurück zum Zitat M. Liu, T. Jiang, X. Xie, L. Qiang, H.J. Roven, Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion. Trans. Nonferrous Metals Soc. China 24(12), 3848–3857 (2014)CrossRef M. Liu, T. Jiang, X. Xie, L. Qiang, H.J. Roven, Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion. Trans. Nonferrous Metals Soc. China 24(12), 3848–3857 (2014)CrossRef
20.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2002)CrossRef R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2002)CrossRef
21.
Zurück zum Zitat K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, M.Y. Zheng, Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties. Mater. Sci. Eng., A 624, 157–168 (2015)CrossRef K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, M.Y. Zheng, Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties. Mater. Sci. Eng., A 624, 157–168 (2015)CrossRef
22.
Zurück zum Zitat M.H. Farshidi, M. Kazeminezhad, H. Miyamoto, Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing. Mater. Sci. Eng., A 640, 42–50 (2015)CrossRef M.H. Farshidi, M. Kazeminezhad, H. Miyamoto, Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing. Mater. Sci. Eng., A 640, 42–50 (2015)CrossRef
23.
Zurück zum Zitat L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation. Mater. Charact. 92, 1–14 (2014)CrossRef L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation. Mater. Charact. 92, 1–14 (2014)CrossRef
24.
Zurück zum Zitat S.K. Panigrahi, R. Jayaganthan, Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions. Mater. Des. 32, 2172–2180 (2011)CrossRef S.K. Panigrahi, R. Jayaganthan, Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions. Mater. Des. 32, 2172–2180 (2011)CrossRef
25.
Zurück zum Zitat N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, P. Venugopa, Effect of cryorolling and annealing on microstructure and properties of commercially pure aluminum. Mater. Sci. Eng., A 398, 246–251 (2005)CrossRef N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, P. Venugopa, Effect of cryorolling and annealing on microstructure and properties of commercially pure aluminum. Mater. Sci. Eng., A 398, 246–251 (2005)CrossRef
26.
Zurück zum Zitat S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility. J. Alloy. Compd. 470(1–2), 285–288 (2009)CrossRef S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility. J. Alloy. Compd. 470(1–2), 285–288 (2009)CrossRef
27.
Zurück zum Zitat S.K. Panigrahi, R. Jayaganthan, A comparative study on mechanical properties of Al 7075 alloy processed by rolling at cryogenic temperature and room temperature. Mater. Sci. Forum 584–586, 734–740 (2008)CrossRef S.K. Panigrahi, R. Jayaganthan, A comparative study on mechanical properties of Al 7075 alloy processed by rolling at cryogenic temperature and room temperature. Mater. Sci. Forum 584–586, 734–740 (2008)CrossRef
28.
Zurück zum Zitat T. Shanmugasundaram, B.S. Murty, V.S. Sarma, Development of ultrafine grained high strength AlCu alloy by cryorolling. Scr. Mater. 54(12), 2013–2017 (2006)CrossRef T. Shanmugasundaram, B.S. Murty, V.S. Sarma, Development of ultrafine grained high strength AlCu alloy by cryorolling. Scr. Mater. 54(12), 2013–2017 (2006)CrossRef
29.
Zurück zum Zitat C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49(7), 657–662 (2003)CrossRef C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49(7), 657–662 (2003)CrossRef
30.
Zurück zum Zitat I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater. Sci. Eng., A 560(10), 1–24 (2013)CrossRef I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater. Sci. Eng., A 560(10), 1–24 (2013)CrossRef
31.
Zurück zum Zitat A.D. Nurse, E.A. Patterson, A photoelastic technique to predict the direction of edge crack extension using blunt cracks. Int. J. Mech. Sci. 32, 253–264 (1990)CrossRef A.D. Nurse, E.A. Patterson, A photoelastic technique to predict the direction of edge crack extension using blunt cracks. Int. J. Mech. Sci. 32, 253–264 (1990)CrossRef
32.
Zurück zum Zitat S.K. Maiti, D.P. Patil, Detection of multiple cracks using frequency measurements. Eng. Fract. Mech. 70, 1553–1572 (2003)CrossRef S.K. Maiti, D.P. Patil, Detection of multiple cracks using frequency measurements. Eng. Fract. Mech. 70, 1553–1572 (2003)CrossRef
33.
Zurück zum Zitat A. Vadiraj, M. Kamaraj, Damage characterization of unmodified and surface modified medical grade titanium alloys under fretting fatigue condition. Mater. Sci. Eng., A 416, 253–260 (2006)CrossRef A. Vadiraj, M. Kamaraj, Damage characterization of unmodified and surface modified medical grade titanium alloys under fretting fatigue condition. Mater. Sci. Eng., A 416, 253–260 (2006)CrossRef
34.
Zurück zum Zitat A. Vadiraj, M. Kamaraj, Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys. Surf. Coat. Technol. 200, 4538–4542 (2006)CrossRef A. Vadiraj, M. Kamaraj, Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys. Surf. Coat. Technol. 200, 4538–4542 (2006)CrossRef
35.
Zurück zum Zitat A.K. Bind, R.N. Singh, S. Sunil, H.K. Khandelwal, Comparison of J-parameters of cold worked and stress relieved Zr–2.5Nb pressure tube alloy determined using load normalization and direct current potential drop technique. Eng. Fract. Mech. 105, 200–210 (2013)CrossRef A.K. Bind, R.N. Singh, S. Sunil, H.K. Khandelwal, Comparison of J-parameters of cold worked and stress relieved Zr–2.5Nb pressure tube alloy determined using load normalization and direct current potential drop technique. Eng. Fract. Mech. 105, 200–210 (2013)CrossRef
36.
Zurück zum Zitat S.P. Singh, S. Bhattacharya, D.K. Sehgal, Evaluation of high temperature mechanical strength of Cr–Mo grade steel through small punch test technique. Eng. Fail. Anal. 39, 207–220 (2014)CrossRef S.P. Singh, S. Bhattacharya, D.K. Sehgal, Evaluation of high temperature mechanical strength of Cr–Mo grade steel through small punch test technique. Eng. Fail. Anal. 39, 207–220 (2014)CrossRef
37.
Zurück zum Zitat A. Choubey, D.K. Sehgal, N. Tandon, Finite element analysis of vessels to study changes in natural frequencies due to cracks. Int. J. Press. Vessels Pip. 83, 181–187 (2006)CrossRef A. Choubey, D.K. Sehgal, N. Tandon, Finite element analysis of vessels to study changes in natural frequencies due to cracks. Int. J. Press. Vessels Pip. 83, 181–187 (2006)CrossRef
38.
Zurück zum Zitat S. Zhong, S.O. Oyadiji, Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mech. Syst. Signal Process. 21, 1853–1884 (2007)CrossRef S. Zhong, S.O. Oyadiji, Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mech. Syst. Signal Process. 21, 1853–1884 (2007)CrossRef
39.
Zurück zum Zitat K. Chung, F. Barlat, J.W. Yoon, O. Richmond, J.C. Brem, D.J. Lege, Yield and strain rate potentials for aluminum alloy sheet forming design. Met. Mater. 4, 931–938 (1998)CrossRef K. Chung, F. Barlat, J.W. Yoon, O. Richmond, J.C. Brem, D.J. Lege, Yield and strain rate potentials for aluminum alloy sheet forming design. Met. Mater. 4, 931–938 (1998)CrossRef
40.
Zurück zum Zitat J.W. Yoon, F. Barlat, R.E. Dick, Plane stress yield function for aluminum alloy sheet—part II: Fe formulation and its implementation. Int. J. Plast 20, 495–522 (2004)CrossRef J.W. Yoon, F. Barlat, R.E. Dick, Plane stress yield function for aluminum alloy sheet—part II: Fe formulation and its implementation. Int. J. Plast 20, 495–522 (2004)CrossRef
41.
Zurück zum Zitat T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRef T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRef
42.
Zurück zum Zitat J. Dolbow, T. Belytschko, Finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef J. Dolbow, T. Belytschko, Finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef
43.
Zurück zum Zitat J.E. Dolbow, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. PhD dissertation, Theoretical and Applied Mechanics, Northwestern University, USA (1999) J.E. Dolbow, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. PhD dissertation, Theoretical and Applied Mechanics, Northwestern University, USA (1999)
44.
Zurück zum Zitat N. Sukumar, D.J. Srolovitz, T.J. Baker, J.H. Prevost, Brittle fracture in polycrystalline microstructures with the extended finite element method. Int. J. Numer. Methods Eng. 56, 2015–2037 (2003)CrossRef N. Sukumar, D.J. Srolovitz, T.J. Baker, J.H. Prevost, Brittle fracture in polycrystalline microstructures with the extended finite element method. Int. J. Numer. Methods Eng. 56, 2015–2037 (2003)CrossRef
45.
Zurück zum Zitat P. Dumstorff, G. Meschke, Finite element modelling of cracks based on the partition of unity method. Proc. Appl. Math. Mech. 2, 226–227 (2003)CrossRef P. Dumstorff, G. Meschke, Finite element modelling of cracks based on the partition of unity method. Proc. Appl. Math. Mech. 2, 226–227 (2003)CrossRef
46.
Zurück zum Zitat B. Patzák, M. Jirásek, Process zone resolution by extended finite elements. Eng. Fract. Mech. 70, 957–977 (2003)CrossRef B. Patzák, M. Jirásek, Process zone resolution by extended finite elements. Eng. Fract. Mech. 70, 957–977 (2003)CrossRef
47.
Zurück zum Zitat K. Sharma, T.Q. Bui, Ch. Zhang, R.R. Bhargava, Analysis of a sub interface crack in piezoelectric biomaterials with the extended finite element method. Eng. Fract. Mech. 104, 114–139 (2013)CrossRef K. Sharma, T.Q. Bui, Ch. Zhang, R.R. Bhargava, Analysis of a sub interface crack in piezoelectric biomaterials with the extended finite element method. Eng. Fract. Mech. 104, 114–139 (2013)CrossRef
48.
Zurück zum Zitat P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, C.W. Lim, Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int. J. Solids Struct. 51, 2167–2182 (2014)CrossRef P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, C.W. Lim, Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int. J. Solids Struct. 51, 2167–2182 (2014)CrossRef
49.
Zurück zum Zitat H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J.-H. Song, J. Muthu, G. Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, T. Rabczuk, Extended finite element method for dynamic fracture of piezoelectric materials. Eng. Fract. Mech. 92, 19–31 (2012)CrossRef H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J.-H. Song, J. Muthu, G. Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, T. Rabczuk, Extended finite element method for dynamic fracture of piezoelectric materials. Eng. Fract. Mech. 92, 19–31 (2012)CrossRef
50.
Zurück zum Zitat H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. Int. J. Multiscale Comput. Eng. 11, 527–541 (2013)CrossRef H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. Int. J. Multiscale Comput. Eng. 11, 527–541 (2013)CrossRef
51.
Zurück zum Zitat P. Das, I.V. Singh, R. Jayaganthan, An experimental evaluation of material properties and fracture simulation of Cryorolled 7075 al alloy. J. Mater. Eng. Perform. 528(24), 7124–7132 (2011)CrossRef P. Das, I.V. Singh, R. Jayaganthan, An experimental evaluation of material properties and fracture simulation of Cryorolled 7075 al alloy. J. Mater. Eng. Perform. 528(24), 7124–7132 (2011)CrossRef
52.
Zurück zum Zitat P. Das, I.V. Singh, R. Jayaganthan, Crack growth simulation of bulk and ultrafine grained 7075 Al alloy by XFEM. Int. J. Mater. Prod. Technol. 44(3/4), 252–276 (2012)CrossRef P. Das, I.V. Singh, R. Jayaganthan, Crack growth simulation of bulk and ultrafine grained 7075 Al alloy by XFEM. Int. J. Mater. Prod. Technol. 44(3/4), 252–276 (2012)CrossRef
53.
Zurück zum Zitat P.N. Rao, R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Mater. Des. 39, 226–233 (2012)CrossRef P.N. Rao, R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Mater. Des. 39, 226–233 (2012)CrossRef
54.
Zurück zum Zitat P.N. Rao, D. Singh, R. Jayaganthan, Mechanical properties and microstructural evolution of Al 6061 alloy processed by multi directional forging at liquid nitrogen temperature. Mater. Des. 56, 97–104 (2014)CrossRef P.N. Rao, D. Singh, R. Jayaganthan, Mechanical properties and microstructural evolution of Al 6061 alloy processed by multi directional forging at liquid nitrogen temperature. Mater. Des. 56, 97–104 (2014)CrossRef
55.
Zurück zum Zitat Prevort Sukumar, Modeling quasi-static crack growth with the extended finite element method Part I: computer implementation. Int. J. Solids Struct. 40(26), 7513–7537 (2003)CrossRef Prevort Sukumar, Modeling quasi-static crack growth with the extended finite element method Part I: computer implementation. Int. J. Solids Struct. 40(26), 7513–7537 (2003)CrossRef
56.
Zurück zum Zitat R. Huang, N. Sukumar, J.H. Prevost, Modeling quasi-static crack growth with the extended finite element method Part II: numerical applications. Int. J. Solids Struct. 40(26), 7539–7552 (2003)CrossRef R. Huang, N. Sukumar, J.H. Prevost, Modeling quasi-static crack growth with the extended finite element method Part II: numerical applications. Int. J. Solids Struct. 40(26), 7539–7552 (2003)CrossRef
57.
Zurück zum Zitat J. Liang, R. Huang, J.H. Prevost, Z. Suo, Evolving crack patterns in thin films with the extended finite element method. Int. J. Solids Struct. 40, 2343–2354 (2003)CrossRef J. Liang, R. Huang, J.H. Prevost, Z. Suo, Evolving crack patterns in thin films with the extended finite element method. Int. J. Solids Struct. 40, 2343–2354 (2003)CrossRef
58.
Zurück zum Zitat N. Moes, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)CrossRef N. Moes, T. Belytschko, Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)CrossRef
59.
Zurück zum Zitat G. Zi, T. Belytschko, New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57, 2221–2240 (2003)CrossRef G. Zi, T. Belytschko, New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57, 2221–2240 (2003)CrossRef
60.
Zurück zum Zitat Abaqus Analysis User’s Manual, ABAQUS Inc., USA Abaqus Analysis User’s Manual, ABAQUS Inc., USA
61.
Zurück zum Zitat Abaqus Theory Manual, ABAQUS Inc., USA Abaqus Theory Manual, ABAQUS Inc., USA
62.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater Sci. 60, 130–207 (2014)CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater Sci. 60, 130–207 (2014)CrossRef
64.
65.
Zurück zum Zitat U.G. Gang, S.H. Lee, W.J. Nam, The evolution of microstructure and mechanical properties of a 5052 aluminium alloy by the application of cryogenic rolling and warm rolling. Mater. Trans. 50(1), 82–86 (2009)CrossRef U.G. Gang, S.H. Lee, W.J. Nam, The evolution of microstructure and mechanical properties of a 5052 aluminium alloy by the application of cryogenic rolling and warm rolling. Mater. Trans. 50(1), 82–86 (2009)CrossRef
66.
Zurück zum Zitat W.T. Becker, S. Lampman, Fracture Appearance and Mechanisms of Deformation and Fracture (ASM International, Materials Park, 2002) W.T. Becker, S. Lampman, Fracture Appearance and Mechanisms of Deformation and Fracture (ASM International, Materials Park, 2002)
68.
Zurück zum Zitat A.A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence. Adv. Appl. Mech. 44, 169–305 (2010)CrossRef A.A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence. Adv. Appl. Mech. 44, 169–305 (2010)CrossRef
69.
Zurück zum Zitat Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee, An analysis of the strain hardening behavior of ultra-fine grain pure titanium. Scr. Mater. 54, 1785–1789 (2006)CrossRef Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee, An analysis of the strain hardening behavior of ultra-fine grain pure titanium. Scr. Mater. 54, 1785–1789 (2006)CrossRef
70.
Zurück zum Zitat D.R. Fang, Q.Q. Duanb, N.Q. Zhao, J.J. Li, S.D. Wu, Z.F. Zhang, Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing. Mater. Sci. Eng., A 459, 137–144 (2007)CrossRef D.R. Fang, Q.Q. Duanb, N.Q. Zhao, J.J. Li, S.D. Wu, Z.F. Zhang, Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing. Mater. Sci. Eng., A 459, 137–144 (2007)CrossRef
71.
Zurück zum Zitat Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K IC of Metallic Materials ASTM Designation: E399–09 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K IC of Metallic Materials ASTM Designation: E399–09
72.
Zurück zum Zitat ASTM Standard Practice for Fracture Toughness Testing of Aluminum Alloys. Designation: B646–12 ASTM Standard Practice for Fracture Toughness Testing of Aluminum Alloys. Designation: B646–12
73.
Zurück zum Zitat ANSI/ASTM B645-78. Standard Practice for plane-strain fracture toughness testing of aluminium alloys ANSI/ASTM B645-78. Standard Practice for plane-strain fracture toughness testing of aluminium alloys
74.
Zurück zum Zitat ASTM E399-85. Standard method of test for plane-strain fracture toughness of metallic materials ASTM E399-85. Standard method of test for plane-strain fracture toughness of metallic materials
75.
Zurück zum Zitat PN-87/H-04335. Standard method for plane-strain fracture toughness PN-87/H-04335. Standard method for plane-strain fracture toughness
Metadaten
Titel
Experimental and XFEM Simulation of Tensile and Fracture Behavior of Al 6061 Alloy Processed by Severe Plastic Deformation
verfasst von
Vasanth Balakrishnan
P. Roshan
Sunkulp Goel
R. Jayaganthan
I. V. Singh
Publikationsdatum
12.01.2017
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis / Ausgabe 1/2017
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-016-0332-7

Weitere Artikel der Ausgabe 1/2017

Metallography, Microstructure, and Analysis 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.