Skip to main content
Erschienen in: Experimental Mechanics 4/2019

20.02.2019

Experimental Characterization of SLM and EBM Cubic Lattice Structures for Lightweight Applications

verfasst von: G. De Pasquale, F. Luceri, M. Riccio

Erschienen in: Experimental Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study carries out an experimental characterization of lattice structures that are based on cubic cells fabricated through selective laser melting (SLM) and electron beam melting (EBM). The lattice failure under compressive load is studied as a function of the process typology, material properties, and dimensional parameters of the unit cell. The bulk material is first characterized to evaluate the process stability. Three main failure modes of the lattice are identified, depending on the response of ductile/brittle material and the direction of crack propagation. The relationship between lattice geometrical parameters and mechanical strength is observed. The results of the modeling and experiments are suitable to validate the design of lightweight components built with AM processes. The structural performances related to geometrical features, material properties and technological constraints are well explained for further applications in structural design. The equivalent Young’s module of lattice samples with different cell size has been measured and compared with numerical simulations based on the homogenization method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brennan-Craddock J, Brackett D, Wildman R, Hague R (2012) The design of impact absorbing structures for additive manufacture. J Phys Conf Ser 382:012042CrossRef Brennan-Craddock J, Brackett D, Wildman R, Hague R (2012) The design of impact absorbing structures for additive manufacture. J Phys Conf Ser 382:012042CrossRef
2.
Zurück zum Zitat Eshraghi S, Das S (2012) Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffold prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8:3138–3143CrossRef Eshraghi S, Das S (2012) Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffold prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8:3138–3143CrossRef
3.
Zurück zum Zitat Prager W (1974) Introduction to structural optimization. Springer Verlag, ViennaMATH Prager W (1974) Introduction to structural optimization. Springer Verlag, ViennaMATH
4.
Zurück zum Zitat Rozvany GI (1997). Aims, scope, basic concept and methods of topology optimization, in: Topology optimization in structural mechanics, Springer Rozvany GI (1997). Aims, scope, basic concept and methods of topology optimization, in: Topology optimization in structural mechanics, Springer
5.
Zurück zum Zitat Bakhvalov N, Panasenko G (1989) Homogenization: averaging process in periodic media. Kluwer, DordrechtCrossRefMATH Bakhvalov N, Panasenko G (1989) Homogenization: averaging process in periodic media. Kluwer, DordrechtCrossRefMATH
6.
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comp Meth Appl Mech Eng 71:197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comp Meth Appl Mech Eng 71:197–224MathSciNetCrossRefMATH
7.
Zurück zum Zitat Noor AK (1994) Recent advances and applications of reduction methods. Appl Mech Rev 47:125–146CrossRef Noor AK (1994) Recent advances and applications of reduction methods. Appl Mech Rev 47:125–146CrossRef
8.
Zurück zum Zitat Kirsch U (1993) Structural optimizations, fundamentals and applications. Springer-Verlag, HeidelbergCrossRef Kirsch U (1993) Structural optimizations, fundamentals and applications. Springer-Verlag, HeidelbergCrossRef
9.
Zurück zum Zitat Fuchs MB (1980) Linearized homogeneous constraints in structural design. Int J Mech Sci 22:333–400CrossRefMATH Fuchs MB (1980) Linearized homogeneous constraints in structural design. Int J Mech Sci 22:333–400CrossRefMATH
10.
Zurück zum Zitat Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA J 11:489–494 Schmit LA, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA J 11:489–494
11.
Zurück zum Zitat Kirsch U (1991) Reduced based approximations of structural displacements for optimal design. AIAA J 29:1751–1758CrossRefMATH Kirsch U (1991) Reduced based approximations of structural displacements for optimal design. AIAA J 29:1751–1758CrossRefMATH
12.
Zurück zum Zitat Kirsch U, Toledano G (1983) Approximate reanalysis for modifications of structural geometry. Comput Struct 16:269–279MATH Kirsch U, Toledano G (1983) Approximate reanalysis for modifications of structural geometry. Comput Struct 16:269–279MATH
13.
Zurück zum Zitat Choi W, Kim J, Park G (2016) Comparison study of some commercial structural optimization software systems. Struct Multidisc Optim 54:685–699MathSciNetCrossRef Choi W, Kim J, Park G (2016) Comparison study of some commercial structural optimization software systems. Struct Multidisc Optim 54:685–699MathSciNetCrossRef
14.
Zurück zum Zitat Booth W, Alperovich J, Chawls P, Ma J, Reid TN, Ramani K (2017) The design for additive manufacturing worksheet. J Mech Des 139:100904CrossRef Booth W, Alperovich J, Chawls P, Ma J, Reid TN, Ramani K (2017) The design for additive manufacturing worksheet. J Mech Des 139:100904CrossRef
15.
Zurück zum Zitat Fraizer WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef Fraizer WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef
16.
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2015). Additive manufacturing technologies, second edition, Springer Gibson I, Rosen D, Stucker B (2015). Additive manufacturing technologies, second edition, Springer
17.
Zurück zum Zitat Chu J, Engelbrecht S, Graf G, Rosen DW (2010) A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyping J 16:275–283CrossRef Chu J, Engelbrecht S, Graf G, Rosen DW (2010) A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyping J 16:275–283CrossRef
18.
Zurück zum Zitat Ahmadi SM, Yavari SA, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor AA (2015) Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8:1871–1896CrossRef Ahmadi SM, Yavari SA, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor AA (2015) Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8:1871–1896CrossRef
19.
Zurück zum Zitat Scipioni Bertoli U, Wolfer AJ, Matthews MJ, Delplanque JP, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef Scipioni Bertoli U, Wolfer AJ, Matthews MJ, Delplanque JP, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef
20.
Zurück zum Zitat Rashed MG, Ashraf M, Mines RA, Hazell PJ (2016) Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater Design 95:518–533CrossRef Rashed MG, Ashraf M, Mines RA, Hazell PJ (2016) Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater Design 95:518–533CrossRef
21.
Zurück zum Zitat Quadbeck P, Kummel K, Hauser R, Standke G, Adler J, Stephani G (2010). Open cell metal foams - application-oriented structure and material selection. Proc. Of CellMat 2010, Dresden, Germany, 279–288 Quadbeck P, Kummel K, Hauser R, Standke G, Adler J, Stephani G (2010). Open cell metal foams - application-oriented structure and material selection. Proc. Of CellMat 2010, Dresden, Germany, 279–288
22.
Zurück zum Zitat Bourell DL, Leu MC, Rosen DW (2009). Roadmap for additive manufacturing: identifying the future of freeform processing, Univ of Texas Bourell DL, Leu MC, Rosen DW (2009). Roadmap for additive manufacturing: identifying the future of freeform processing, Univ of Texas
23.
Zurück zum Zitat Gibson LJ, Ashby MF (1981). The mechanics of three-dimensional cellular materials, Royal Society publishing Gibson LJ, Ashby MF (1981). The mechanics of three-dimensional cellular materials, Royal Society publishing
24.
Zurück zum Zitat Gibson LJ, Ashby MF (1999). Cellular solids: structure and properties. Cambridge University Press Gibson LJ, Ashby MF (1999). Cellular solids: structure and properties. Cambridge University Press
25.
Zurück zum Zitat Ashby MF, Medalist RM (1983) The mechanical properties of cellular solids. Metall Trans A 14:1755–1769CrossRef Ashby MF, Medalist RM (1983) The mechanical properties of cellular solids. Metall Trans A 14:1755–1769CrossRef
26.
Zurück zum Zitat Ju J, Summers JD (2011) Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater Design 32:512–524CrossRef Ju J, Summers JD (2011) Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater Design 32:512–524CrossRef
27.
Zurück zum Zitat Coulais C (2016) Periodic cellular materials with nonlinear elastic homogenized stress-strain response at small strains. Int J Solids Struct 97-98:226–238CrossRef Coulais C (2016) Periodic cellular materials with nonlinear elastic homogenized stress-strain response at small strains. Int J Solids Struct 97-98:226–238CrossRef
28.
Zurück zum Zitat Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRefMATH Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769CrossRefMATH
29.
Zurück zum Zitat Ushijima K, Cantwell WJ, Chen DH (2013) Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading. Int J Mech Sci 68:47–55CrossRef Ushijima K, Cantwell WJ, Chen DH (2013) Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading. Int J Mech Sci 68:47–55CrossRef
30.
Zurück zum Zitat Smith M, Guan Z, Cantwell WJ (2013) Finite element modeling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef Smith M, Guan Z, Cantwell WJ (2013) Finite element modeling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef
31.
Zurück zum Zitat Dong G, Tang Y, Zhao YF (2017) A survey of modeling of lattice structures fabricated by additive manufacturing. J Mech Des 139:100906CrossRef Dong G, Tang Y, Zhao YF (2017) A survey of modeling of lattice structures fabricated by additive manufacturing. J Mech Des 139:100906CrossRef
32.
Zurück zum Zitat Wallach JC, Gibson LJ (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38:7181–7196CrossRefMATH Wallach JC, Gibson LJ (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38:7181–7196CrossRefMATH
34.
Zurück zum Zitat Park SI, Rosen DW, Choi SK, Duty CE (2014) Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Additive Manufacturing 1-4:12–23CrossRef Park SI, Rosen DW, Choi SK, Duty CE (2014) Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Additive Manufacturing 1-4:12–23CrossRef
35.
Zurück zum Zitat Niu J, Choo HL, Sun W, Mok SH (2017). Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int J Mater Des Niu J, Choo HL, Sun W, Mok SH (2017). Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int J Mater Des
36.
Zurück zum Zitat Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef
37.
Zurück zum Zitat Malek S, Gibson L (2015) Effective elastic properties of periodic hexagonal honeycombs. Mech Mater 91:226–240CrossRef Malek S, Gibson L (2015) Effective elastic properties of periodic hexagonal honeycombs. Mech Mater 91:226–240CrossRef
38.
Zurück zum Zitat Blazy JS, Marie-Louise A, Forest S, Chastel Y, Pineau A, Awade A, Grolleron C, Moussy F (2004) Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. Int J Mech Sci 46:217–244CrossRef Blazy JS, Marie-Louise A, Forest S, Chastel Y, Pineau A, Awade A, Grolleron C, Moussy F (2004) Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. Int J Mech Sci 46:217–244CrossRef
39.
Zurück zum Zitat Mahshid R, Hansen HN, Højbjerre KL (2016) Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater Design 104:276–283CrossRef Mahshid R, Hansen HN, Højbjerre KL (2016) Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater Design 104:276–283CrossRef
40.
Zurück zum Zitat Brandl E, Heckenberger U, Holzing V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Design 34:159–169CrossRef Brandl E, Heckenberger U, Holzing V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Design 34:159–169CrossRef
41.
Zurück zum Zitat Niu J, Choo HL, Sun W (2016) Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering. Proc IMechE Part L 231:171–178 Niu J, Choo HL, Sun W (2016) Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering. Proc IMechE Part L 231:171–178
42.
Zurück zum Zitat Jin T, Zhou Z, Wang Z, Wu G, Shu X (2015) Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs. Mat Sci Eng A-Struct 635:23–35CrossRef Jin T, Zhou Z, Wang Z, Wu G, Shu X (2015) Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs. Mat Sci Eng A-Struct 635:23–35CrossRef
43.
Zurück zum Zitat Qiu C, Yue S, Adkins NJ, Ward M, Hassanin H, Lee PD, Withers PJ, Attallah MM (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mat Sci Eng A-Struct 628:188–197CrossRef Qiu C, Yue S, Adkins NJ, Ward M, Hassanin H, Lee PD, Withers PJ, Attallah MM (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mat Sci Eng A-Struct 628:188–197CrossRef
44.
Zurück zum Zitat Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Cim-Int Manuf 49:170–180CrossRef Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Cim-Int Manuf 49:170–180CrossRef
45.
Zurück zum Zitat Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5:701–711CrossRef Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5:701–711CrossRef
46.
Zurück zum Zitat P.A. Kobryn, S.L. Semiatin (2001). Mechanical properties of laser-deposited Ti-6Al-4V, in: solid freeform fabrication symposium proceedings, Austin, USA P.A. Kobryn, S.L. Semiatin (2001). Mechanical properties of laser-deposited Ti-6Al-4V, in: solid freeform fabrication symposium proceedings, Austin, USA
47.
Zurück zum Zitat K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.-P. Kruth (2011). Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, in: proc annual Int solid freeform fabrication Symp, the University of Texas at Austin, USA K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.-P. Kruth (2011). Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, in: proc annual Int solid freeform fabrication Symp, the University of Texas at Austin, USA
48.
Zurück zum Zitat Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans-A 42:3190–3199CrossRef Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans-A 42:3190–3199CrossRef
49.
Zurück zum Zitat Qiu C, Adkins NJ, Attalah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mat Sci Eng A-Struct 578:230–239CrossRef Qiu C, Adkins NJ, Attalah MM (2013) Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mat Sci Eng A-Struct 578:230–239CrossRef
50.
Zurück zum Zitat Guessasma S, Zhang W, Zhu J, Belhabib S, Nouri H (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multisci Des Optim 6:1–13CrossRef Guessasma S, Zhang W, Zhu J, Belhabib S, Nouri H (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multisci Des Optim 6:1–13CrossRef
51.
Zurück zum Zitat Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tool Manu 62:32–38CrossRef Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tool Manu 62:32–38CrossRef
52.
Zurück zum Zitat Gümrük R, Mines RA (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139CrossRef Gümrük R, Mines RA (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139CrossRef
53.
Zurück zum Zitat Huissein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Tech 213:1019–1026CrossRef Huissein A, Hao L, Yan C, Everson R, Young P (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Tech 213:1019–1026CrossRef
54.
Zurück zum Zitat Ahmadi SM, Campoli G, Amin Yavari S, Sajadi B, Wauthle R, Schrooten J, Weinans H, Zadpoor AA (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed 34:106–115CrossRef Ahmadi SM, Campoli G, Amin Yavari S, Sajadi B, Wauthle R, Schrooten J, Weinans H, Zadpoor AA (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed 34:106–115CrossRef
55.
Zurück zum Zitat Maskery I, Aremu AO, Simonelli M, Tuck C, Wildman RD, Ashcroft IA, Hague RJ (2015) Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centered-cubic lattices of varying cell size. Exp Mech 55:1261–1272CrossRef Maskery I, Aremu AO, Simonelli M, Tuck C, Wildman RD, Ashcroft IA, Hague RJ (2015) Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centered-cubic lattices of varying cell size. Exp Mech 55:1261–1272CrossRef
56.
Zurück zum Zitat Maskery I, Aboulkhair NT, Aremu AO, Tuck CJ, Ashcroft IA (2017) Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing 16:24–29CrossRef Maskery I, Aboulkhair NT, Aremu AO, Tuck CJ, Ashcroft IA (2017) Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing 16:24–29CrossRef
57.
Zurück zum Zitat Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Design 98:344–357CrossRef Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Design 98:344–357CrossRef
58.
Zurück zum Zitat De Pasquale G, Montemurro M, Catapano A, Bertolino G, Revelli L (2018) Cellular structures from additive processes: design, homogenization and experimental validation. Structural Integrity Procedia 8:75–82CrossRef De Pasquale G, Montemurro M, Catapano A, Bertolino G, Revelli L (2018) Cellular structures from additive processes: design, homogenization and experimental validation. Structural Integrity Procedia 8:75–82CrossRef
59.
Zurück zum Zitat De Pasquale G, Bertolino G, Luceri F (2017). Design methods for AM lightweight structures: analytic modeling and validation. Proc. AIV, Firenze, Italy De Pasquale G, Bertolino G, Luceri F (2017). Design methods for AM lightweight structures: analytic modeling and validation. Proc. AIV, Firenze, Italy
60.
Zurück zum Zitat Mohammad A, Alahmari AM, Mohammed MK, Renganayagalu RK, Moiduddin K (2017) Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting. Materials 10:211CrossRef Mohammad A, Alahmari AM, Mohammed MK, Renganayagalu RK, Moiduddin K (2017) Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting. Materials 10:211CrossRef
61.
Zurück zum Zitat Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48:300–307CrossRef
62.
Zurück zum Zitat Dong L, Deshpande V, Wadley H (2015) Mechanical response of Ti-6Al-4V octet-truss lattice structures. Int J Solids Struct 60-61:107–124CrossRef Dong L, Deshpande V, Wadley H (2015) Mechanical response of Ti-6Al-4V octet-truss lattice structures. Int J Solids Struct 60-61:107–124CrossRef
63.
Zurück zum Zitat Catapano A, Montemurro M (2014) A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos Struct 118:664–676CrossRef Catapano A, Montemurro M (2014) A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos Struct 118:664–676CrossRef
64.
Zurück zum Zitat Catapano A, Montemurro M (2014) A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimization strategy. Compos Struct 118:677–690CrossRef Catapano A, Montemurro M (2014) A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimization strategy. Compos Struct 118:677–690CrossRef
Metadaten
Titel
Experimental Characterization of SLM and EBM Cubic Lattice Structures for Lightweight Applications
verfasst von
G. De Pasquale
F. Luceri
M. Riccio
Publikationsdatum
20.02.2019
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2019
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-019-00481-8

Weitere Artikel der Ausgabe 4/2019

Experimental Mechanics 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.