Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2023

10.11.2023 | Research Article-Petroleum Engineering

Experimental Study of Hydraulic Cavitation Tool for CBM Production Enhancement

verfasst von: Jie Zheng, Zhihao Hu, Yihua Dou, Jiahui Li, Yanbin Qin, Xu Yang, Yarong Zhang

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To address the problem of high adsorption of coalbed methane (CBM), a hydraulic cavitation tool for CBM production enhancement was designed based on the mechanism of cavitation wave promoting CBM production enhancement. To achieve the best cavitation performance and generate high-intensity cavitation waves to promote CBM desorption, the influence of inlet flow rate and upper and lower nozzle diameter ratio on cavitation performance was investigated by CFD technique and cavitation jet experiment. The simulation and experimental results show that as the inlet flow rate increases, the cavitation effect in the oscillation chamber increases, and the throttling pressure difference increases, so the throttling pressure difference is used to characterize the cavitation performance of the cavitation tool. The cavitation performance of the cavitation tool is analyzed when the upper and lower nozzle diameter ratio is from 1.5 to 3 and the inlet flow rate is from 2  to 10 m3/h. When the upper and lower nozzle diameter ratio is 2, the inlet flow rate is 6 m3/h, the throttling pressure difference increases by 73.2%, the value of vapor volume fraction increases by 77.7%, the cavitation effect no longer increases, achieving optimal cavitation performance. As a result, the high-intensity cavitation waves generated by the cavitation tool can continuously propagate in the formation, play a continuous oscillating effect on the coal seam, and can significantly increase the gas production of coalbed methane. The research results can provide new ideas for the development of CBM production enhancement tools.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Men, X.; Tao, S.; Liu, Z., et al.: Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Fuel Process. Techno. 216, 106779 (2021)CrossRef Men, X.; Tao, S.; Liu, Z., et al.: Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Fuel Process. Techno. 216, 106779 (2021)CrossRef
2.
Zurück zum Zitat White, C.M.; Smith, D.H.; Jones, K.L., et al.: Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—a review. Energy Fuels 19(3), 659–724 (2005)CrossRef White, C.M.; Smith, D.H.; Jones, K.L., et al.: Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—a review. Energy Fuels 19(3), 659–724 (2005)CrossRef
3.
Zurück zum Zitat Lau, H.C.; Li, H.; Huang, S.: Challenges and opportunities of coalbed methane development in China. Energy Fuels 31(5), 4588–4602 (2017)CrossRef Lau, H.C.; Li, H.; Huang, S.: Challenges and opportunities of coalbed methane development in China. Energy Fuels 31(5), 4588–4602 (2017)CrossRef
4.
Zurück zum Zitat Li, T.; Wu, C.; Liu, Q.: Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China. J. Nat. Gas Sci. Eng. 22, 625–632 (2015)CrossRef Li, T.; Wu, C.; Liu, Q.: Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China. J. Nat. Gas Sci. Eng. 22, 625–632 (2015)CrossRef
5.
Zurück zum Zitat Cheng, Y.; Hu, B.: Main occurrence form of methane in coal: Micropore filling. J. China Coal Soc. 46(9), 2933–2948 (2021) Cheng, Y.; Hu, B.: Main occurrence form of methane in coal: Micropore filling. J. China Coal Soc. 46(9), 2933–2948 (2021)
6.
Zurück zum Zitat Ahamed, M.A.A.; Perera, M.S.A.; Dong, Y., et al.: Proppant damage mechanisms in coal seam reservoirs during the hydraulic fracturing process: a review. Fuel 253, 615–629 (2019)CrossRef Ahamed, M.A.A.; Perera, M.S.A.; Dong, Y., et al.: Proppant damage mechanisms in coal seam reservoirs during the hydraulic fracturing process: a review. Fuel 253, 615–629 (2019)CrossRef
7.
Zurück zum Zitat Zuo, S.; Ge, Z.; Zhou, Z., et al.: A novel hydraulic mode to promote gas extraction: pressure relief technologies for tectonic regions and fracturing technologies for nontectonic regions. Appl. Sci. Basel. 9(7), 1404 (2019)CrossRef Zuo, S.; Ge, Z.; Zhou, Z., et al.: A novel hydraulic mode to promote gas extraction: pressure relief technologies for tectonic regions and fracturing technologies for nontectonic regions. Appl. Sci. Basel. 9(7), 1404 (2019)CrossRef
8.
Zurück zum Zitat Tang, Z.; Zhai, C.; Zou, Q., et al.: Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance. Fuel 186, 571–578 (2016)CrossRef Tang, Z.; Zhai, C.; Zou, Q., et al.: Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance. Fuel 186, 571–578 (2016)CrossRef
9.
Zurück zum Zitat Liu, D.; Li, J.; Zou, C., et al.: Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel 272, 117621 (2020)CrossRef Liu, D.; Li, J.; Zou, C., et al.: Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel 272, 117621 (2020)CrossRef
10.
Zurück zum Zitat Zou, Q.; Lin, B.: Fluid-solid coupling characteristics of gas-bearing coal subjected to hydraulic slotting: an experimental investigation. Energy Fuels 32(2), 1047–1060 (2018)CrossRef Zou, Q.; Lin, B.: Fluid-solid coupling characteristics of gas-bearing coal subjected to hydraulic slotting: an experimental investigation. Energy Fuels 32(2), 1047–1060 (2018)CrossRef
11.
Zurück zum Zitat Zuo, S.; Wang, C.; Liao, Y., et al.: Mechanism of a novel ultrasonic promoting fracturing technology in stimulating permeability and gas extraction. Energy Rep. 8, 12776–12786 (2022)CrossRef Zuo, S.; Wang, C.; Liao, Y., et al.: Mechanism of a novel ultrasonic promoting fracturing technology in stimulating permeability and gas extraction. Energy Rep. 8, 12776–12786 (2022)CrossRef
12.
Zurück zum Zitat Hao, C.; Cheng, Y.; Wang, L., et al.: A novel technology for enhancing coalbed methane extraction: hydraulic cavitating assisted fracturing. J. Nat. Gas Sci. Eng. 72, 103040 (2019)CrossRef Hao, C.; Cheng, Y.; Wang, L., et al.: A novel technology for enhancing coalbed methane extraction: hydraulic cavitating assisted fracturing. J. Nat. Gas Sci. Eng. 72, 103040 (2019)CrossRef
13.
Zurück zum Zitat Zuo, S.; Zhang, L.; Deng, K.: Experimental study on gas adsorption and drainage of gas-bearing coal subjected to tree-type hydraulic fracturing. Energy Rep. 8, 649–660 (2022)CrossRef Zuo, S.; Zhang, L.; Deng, K.: Experimental study on gas adsorption and drainage of gas-bearing coal subjected to tree-type hydraulic fracturing. Energy Rep. 8, 649–660 (2022)CrossRef
14.
Zurück zum Zitat Zhou, X.; Li, X.; Bai, G., et al.: Research method of pressure relief and permeability enhancement in low permeability coal seam: a review. AIP ADV. 12(1), 010702 (2022)CrossRef Zhou, X.; Li, X.; Bai, G., et al.: Research method of pressure relief and permeability enhancement in low permeability coal seam: a review. AIP ADV. 12(1), 010702 (2022)CrossRef
15.
Zurück zum Zitat Busch, A.; Gensterblum, Y.: CBM and CO2-ECBM related sorption processes in coal: a review. Int. J. Coal Geol. 87(2), 49–71 (2011)CrossRef Busch, A.; Gensterblum, Y.: CBM and CO2-ECBM related sorption processes in coal: a review. Int. J. Coal Geol. 87(2), 49–71 (2011)CrossRef
16.
Zurück zum Zitat Bustin, A.M.M.; Bustin, R.M.; Chikatamarla, L., et al.: Learnings from a failed nitrogen enhanced coalbed methane pilot: Piceance Basin, Colorado. Int. J. Coal Geol. 165, 64–75 (2016)CrossRef Bustin, A.M.M.; Bustin, R.M.; Chikatamarla, L., et al.: Learnings from a failed nitrogen enhanced coalbed methane pilot: Piceance Basin, Colorado. Int. J. Coal Geol. 165, 64–75 (2016)CrossRef
17.
Zurück zum Zitat Wang, Z.; Liu, X.; Zhang, H., et al.: Modeling of kinetic characteristics of alkaline-surfactant-polymer-strengthened foams decay under ultrasonic standing wave. Petrol Sci. 19(4), 1825–1839 (2022)CrossRef Wang, Z.; Liu, X.; Zhang, H., et al.: Modeling of kinetic characteristics of alkaline-surfactant-polymer-strengthened foams decay under ultrasonic standing wave. Petrol Sci. 19(4), 1825–1839 (2022)CrossRef
18.
Zurück zum Zitat Agi, A.; Junin, R.; Chong, A.S.: Intermittent ultrasonic wave to improve oil recovery. J. Petrol. Sci. Eng. 166, 577–591 (2018)CrossRef Agi, A.; Junin, R.; Chong, A.S.: Intermittent ultrasonic wave to improve oil recovery. J. Petrol. Sci. Eng. 166, 577–591 (2018)CrossRef
19.
Zurück zum Zitat Wang, Z.; Xu, Y.; Bajracharya, S.: The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology. Ultrason. Sonochem. 27, 339–344 (2015)CrossRef Wang, Z.; Xu, Y.; Bajracharya, S.: The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology. Ultrason. Sonochem. 27, 339–344 (2015)CrossRef
20.
Zurück zum Zitat Jiang, Y.; Song, X.; Liu, H., et al.: Laboratory measurements of methane desorption on coal during acoustic stimulation. Int. J. Rock Mech. Min. 78, 10–18 (2015)CrossRef Jiang, Y.; Song, X.; Liu, H., et al.: Laboratory measurements of methane desorption on coal during acoustic stimulation. Int. J. Rock Mech. Min. 78, 10–18 (2015)CrossRef
21.
Zurück zum Zitat Jiang, Y.; Xian, X.; Yi, J., et al.: Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal. J. China Coal Soc. 33(6), 675–680 (2008) Jiang, Y.; Xian, X.; Yi, J., et al.: Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal. J. China Coal Soc. 33(6), 675–680 (2008)
22.
Zurück zum Zitat Jiang, Y.; Yang, X.; Xian, X., et al.: The infiltration equation of coal bed under the cooperation of stress field, temperature field and sound field. J. China Coal Soc. 35(3), 434–438 (2010) Jiang, Y.; Yang, X.; Xian, X., et al.: The infiltration equation of coal bed under the cooperation of stress field, temperature field and sound field. J. China Coal Soc. 35(3), 434–438 (2010)
23.
Zurück zum Zitat Zhao, L.: Experiment on CBM adsorption-desorption rules under the effect of ultrasonic pressure waves. Nat. Gas Ind. 36(2), 21–25 (2016) Zhao, L.: Experiment on CBM adsorption-desorption rules under the effect of ultrasonic pressure waves. Nat. Gas Ind. 36(2), 21–25 (2016)
24.
Zurück zum Zitat Wu, P.; Wang, X.; Lin, W., et al.: Acoustic characterization of cavitation intensity: a review. Ultrason. Sonochem. 82, 105878 (2022)CrossRef Wu, P.; Wang, X.; Lin, W., et al.: Acoustic characterization of cavitation intensity: a review. Ultrason. Sonochem. 82, 105878 (2022)CrossRef
25.
Zurück zum Zitat Ge, Z.; Lu, Y.; Zhou, D., et al.: Study on regular and mechanism of coal bed methane desorption experiment under sonic vibrating of cavitation water jets. J. China Coal Soc. 36(7), 1150–1155 (2011) Ge, Z.; Lu, Y.; Zhou, D., et al.: Study on regular and mechanism of coal bed methane desorption experiment under sonic vibrating of cavitation water jets. J. China Coal Soc. 36(7), 1150–1155 (2011)
26.
Zurück zum Zitat Wang, H.; Xia, B.; Lu, Y., et al.: Experimental study on sonic vibrating effects of cavitation water jets and its promotion effects on coalbed methane desorption. Fuel 185, 468–477 (2016)CrossRef Wang, H.; Xia, B.; Lu, Y., et al.: Experimental study on sonic vibrating effects of cavitation water jets and its promotion effects on coalbed methane desorption. Fuel 185, 468–477 (2016)CrossRef
27.
Zurück zum Zitat Li, X.; Feng, M.; Zhou, D., et al.: Experimental analysis of coal bed methane desorption and seepage under sonic vibrating of cavitation water jets. J. Chongqing Univ. 34(4), 1–5 (2011) Li, X.; Feng, M.; Zhou, D., et al.: Experimental analysis of coal bed methane desorption and seepage under sonic vibrating of cavitation water jets. J. Chongqing Univ. 34(4), 1–5 (2011)
28.
Zurück zum Zitat Lu, Y.; Ding, H.; Ge, Z., et al.: Experiment study of effect of coal permeability under thermal effect of cavitation water jets. Rock Soil Mech. 35(5), 1247–1254 (2014) Lu, Y.; Ding, H.; Ge, Z., et al.: Experiment study of effect of coal permeability under thermal effect of cavitation water jets. Rock Soil Mech. 35(5), 1247–1254 (2014)
29.
Zurück zum Zitat Zheng, H.; Zheng, Y.; Zhu, J.: Recent developments in hydrodynamic cavitation reactors: cavitation mechanism, reactor design, and applications. Eng. PRC. 19, 180–198 (2022) Zheng, H.; Zheng, Y.; Zhu, J.: Recent developments in hydrodynamic cavitation reactors: cavitation mechanism, reactor design, and applications. Eng. PRC. 19, 180–198 (2022)
30.
Zurück zum Zitat Wang, L.; Wang, X.; Xu, R., et al.: Experimental study on structural parameters optimized design of the self-excited oscillation pulsed jet nozzle. J. Eng. Thermophys. Rus. 25(6), 956–958 (2004) Wang, L.; Wang, X.; Xu, R., et al.: Experimental study on structural parameters optimized design of the self-excited oscillation pulsed jet nozzle. J. Eng. Thermophys. Rus. 25(6), 956–958 (2004)
31.
Zurück zum Zitat Su, Y.; Shi, J.; Wang, Y.: Numerical simulation of cavitation of water jet nozzle based on realizable k-epsilon model. Mechanika 28(1), 12–18 (2022)CrossRef Su, Y.; Shi, J.; Wang, Y.: Numerical simulation of cavitation of water jet nozzle based on realizable k-epsilon model. Mechanika 28(1), 12–18 (2022)CrossRef
32.
Zurück zum Zitat Jin, H.; Tang, K.; Liu, X., et al.: Numerical simulation and experimental study on internal depressurization flow characteristics of a multi-layer sleeve regulating valve. J. Appl. Fluid Mech. 16(4), 877–890 (2023) Jin, H.; Tang, K.; Liu, X., et al.: Numerical simulation and experimental study on internal depressurization flow characteristics of a multi-layer sleeve regulating valve. J. Appl. Fluid Mech. 16(4), 877–890 (2023)
33.
Zurück zum Zitat Chen, Y.; Hu, Y.; Zhang, S.: Structure optimization of submerged water jet cavitating nozzle with a hybrid algorithm. Eng. Appl. Comp. Fluid 13(1), 591–608 (2019) Chen, Y.; Hu, Y.; Zhang, S.: Structure optimization of submerged water jet cavitating nozzle with a hybrid algorithm. Eng. Appl. Comp. Fluid 13(1), 591–608 (2019)
34.
Zurück zum Zitat Zhang, Y.; Wu, X.; Li, G., et al.: Study on erosion performance of swirling cavitating jet for natural gas hydrate. J. Cent. S. Univ. (Sci. Technol.) 53(3), 909–923 (2022) Zhang, Y.; Wu, X.; Li, G., et al.: Study on erosion performance of swirling cavitating jet for natural gas hydrate. J. Cent. S. Univ. (Sci. Technol.) 53(3), 909–923 (2022)
35.
Zurück zum Zitat Yuan, M.; Li, D.; Kang, Y., et al.: The characteristics of self-resonating jet issuing from the Helmholtz nozzle combined with a Venturi tube structure. J. Appl. Fluid Mech. 13(3), 779–791 (2020)CrossRef Yuan, M.; Li, D.; Kang, Y., et al.: The characteristics of self-resonating jet issuing from the Helmholtz nozzle combined with a Venturi tube structure. J. Appl. Fluid Mech. 13(3), 779–791 (2020)CrossRef
36.
Zurück zum Zitat Wang, X.; Jiao, L.; Wang, L.: Numerical simulation of self-excited oscillation pulsed jet and analysis of parameters’ influence. J. Zhejiang Univ. (Eng. Sci.) 39(9), 1450–1454 (2005) Wang, X.; Jiao, L.; Wang, L.: Numerical simulation of self-excited oscillation pulsed jet and analysis of parameters’ influence. J. Zhejiang Univ. (Eng. Sci.) 39(9), 1450–1454 (2005)
Metadaten
Titel
Experimental Study of Hydraulic Cavitation Tool for CBM Production Enhancement
verfasst von
Jie Zheng
Zhihao Hu
Yihua Dou
Jiahui Li
Yanbin Qin
Xu Yang
Yarong Zhang
Publikationsdatum
10.11.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-08438-9

Weitere Artikel der Ausgabe 12/2023

Arabian Journal for Science and Engineering 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.