Skip to main content

2024 | OriginalPaper | Buchkapitel

Experimental Study on the Effect of Water Molecular Clusters on Hydrate Formation

verfasst von : Shangyu Zhang, Shuanshi Fan, Xuemei Lang, Gang Li, Yanhong Wang

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gas hydrates are ice like crystalline substances formed by host water molecules and guest gas molecules under certain temperature and pressure conditions. Hydrate technology has important applications. Fields such as CO2 capture, natural gas transportation, refrigeration, gas separation, and seawater purification. During the process of hydrate formation, hydrogen bonds are formed between water molecules to form a cage like structure, while guest molecules form hydrates in the cage. However, water molecules do not exist in the form of individual molecules, but rather water molecules are connected by hydrogen bonds to form water molecular clusters. The experimental results show that several water treatments can change the size of water molecule clusters, among which microwave, ultrasonic, and freezing treatments can make water molecule clusters smaller and hydrated water molecule clusters larger. Different water samples and untreated deionized water also exhibit different phenomena during hydrate formation. For example, the subcooling of deionized water at the beginning of generation is 4.6 ℃, and the maximum growth rate during growth is 8.50%/h, while the water treated with microwave is divided into 150s, 200s, and 250s according to the treatment time. The subcooling at the beginning of generation is 5.7 ℃, 5.6 ℃, and 4.1 ℃, and the maximum growth rate is 5.61%/h, 13.08%/h, and 8.01%/h, The phenomenon of promoting hydrate growth has occurred; The water treated by ultrasound is divided into 1 h, 2 h, and 3 h according to the treatment time. The initial subcooling generated is 5.1 ℃, 6.5 ℃, and 6.3 ℃, and the maximum growth rates are 4.47%/h, 3.77%/h, and 6.35%/h. There is a phenomenon of inhibiting hydrate formation, and different phenomena will also occur for hydration and freezing treatment. In this experimental study, the effects of several water treatment methods on water molecular clusters and the formation of hydrates were mainly explored. Other methods that affect water molecular clusters in future work are also worth studying.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, Y., Zhu, Y., Wu, B.: Natural gas hydrates - new energy in the 21st century. Deposit Geol. 31(02), 401–405 (2012) Liu, Y., Zhu, Y., Wu, B.: Natural gas hydrates - new energy in the 21st century. Deposit Geol. 31(02), 401–405 (2012)
2.
Zurück zum Zitat Shi, Z., Li, Y., Wang, W., et al.: Review of hydrate reactor in natural gas hydrate storage and transportation. Chem. Ind. Eng. Progress 37(9), 3326–3336 (2018) Shi, Z., Li, Y., Wang, W., et al.: Review of hydrate reactor in natural gas hydrate storage and transportation. Chem. Ind. Eng. Progress 37(9), 3326–3336 (2018)
3.
Zurück zum Zitat Sinehbaghizadeh, S., Saptoro, A., Mohammadi, A.H.: CO2 hydrate properties and applications: a state of the art. Progress Energy Combust. Sci. 93, 101026 (2022) Sinehbaghizadeh, S., Saptoro, A., Mohammadi, A.H.: CO2 hydrate properties and applications: a state of the art. Progress Energy Combust. Sci. 93, 101026 (2022)
4.
Zurück zum Zitat Gibo, A., Nakao, S., Shiraishi, S., et al.: Development of dual functional methodology for seawater desalination and salt manufacture by carbon dioxide hydrate formation. Desalination 539, 115937 (2022) Gibo, A., Nakao, S., Shiraishi, S., et al.: Development of dual functional methodology for seawater desalination and salt manufacture by carbon dioxide hydrate formation. Desalination 539, 115937 (2022)
5.
Zurück zum Zitat Song, Q., Wang, J., Wu, X., et al.: Application and prospects of hydrate technology. Oil Gas Storage Transp. 28(09), 5–9+79+83 (2009) Song, Q., Wang, J., Wu, X., et al.: Application and prospects of hydrate technology. Oil Gas Storage Transp. 28(09), 5–9+79+83 (2009)
6.
Zurück zum Zitat Willson, R.C., Bulot, E., Cooney, C.L.: Clathrate hydrate formation enhances near-critical and supercritical solvent extraction equilibria. Chem. Eng. Commun. 95, 47–55 (1990) Willson, R.C., Bulot, E., Cooney, C.L.: Clathrate hydrate formation enhances near-critical and supercritical solvent extraction equilibria. Chem. Eng. Commun. 95, 47–55 (1990)
7.
Zurück zum Zitat Wang, P.F., Teng, Y., Zhao, Y.S., et al.: Experimental studies on gas hydrate-based CO2 storage: state-of-the-art and future research directions. Energy Technol. 9(7), 2100004 (2021) Wang, P.F., Teng, Y., Zhao, Y.S., et al.: Experimental studies on gas hydrate-based CO2 storage: state-of-the-art and future research directions. Energy Technol. 9(7), 2100004 (2021)
8.
Zurück zum Zitat Jensen, L., Thomsen, K., von Solms, N.: Propane hydrate nucleation: experimental investigation and correlation. Chem. Eng. Sci. 63(12), 3069–3080 (2008) Jensen, L., Thomsen, K., von Solms, N.: Propane hydrate nucleation: experimental investigation and correlation. Chem. Eng. Sci. 63(12), 3069–3080 (2008)
9.
Zurück zum Zitat Dongliang, Z., Liu Daoping, W., Zhimin, et al.: Growth characteristics of natural gas hydrates on the surface of suspended water droplets. J. Process Eng. 04, 746–750 (2008) Dongliang, Z., Liu Daoping, W., Zhimin, et al.: Growth characteristics of natural gas hydrates on the surface of suspended water droplets. J. Process Eng. 04, 746–750 (2008)
10.
Zurück zum Zitat Zhou, C., Hao, W., Feng, Z.: Shortening the induction period of natural gas hydrate formation using pore plate bubble method. Nat. Gas Ind. (07), 27–29+15–16 (2005) Zhou, C., Hao, W., Feng, Z.: Shortening the induction period of natural gas hydrate formation using pore plate bubble method. Nat. Gas Ind. (07), 27–29+15–16 (2005)
11.
Zurück zum Zitat Aminnaji, M., Anderson, R., Hase, A., et al.: Can kinetic hydrate inhibitors inhibit the growth of pre-formed gas hydrates?. Gas Sci. Eng. 109, 104831 (2023) Aminnaji, M., Anderson, R., Hase, A., et al.: Can kinetic hydrate inhibitors inhibit the growth of pre-formed gas hydrates?. Gas Sci. Eng. 109, 104831 (2023)
12.
Zurück zum Zitat LI, J.M., Wang, S.L., Zhou, S.D., et al.: Research progress of natural gas hydrate inhibition technology. Mod. Chem. Ind. 34(9), 22–25 (2014) LI, J.M., Wang, S.L., Zhou, S.D., et al.: Research progress of natural gas hydrate inhibition technology. Mod. Chem. Ind. 34(9), 22–25 (2014)
Metadaten
Titel
Experimental Study on the Effect of Water Molecular Clusters on Hydrate Formation
verfasst von
Shangyu Zhang
Shuanshi Fan
Xuemei Lang
Gang Li
Yanhong Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_41