Skip to main content

2024 | OriginalPaper | Buchkapitel

Study on the Dissociation Characteristics of Methane Hydrates in Porous Media above and below the Freezing Point

verfasst von : Pei Liu, Yanhong Wang, Shuanshi Fan, Xuemei Lang, Gang Li

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural gas hydrates are crystalline structures formed by the combination of water and natural gas under specific temperature and pressure conditions. They hold tremendous potential as a viable alternative energy source. However, the field of natural gas hydrates faces widespread challenges, including low gas production rates and uneven gas production. In order to achieve low-enthalpy and sustainable methane hydrate production, this study conducted methane hydrate sample reshaping within sediments with varying initial water saturation levels. The research investigated the gas production behavior of methane hydrates within sediments characterized by different initial water saturation under varying production temperatures. Additionally, it employed a no-solid-phase dissociation technique to study the gas production behavior of methane hydrates within sediments at temperatures below the freezing point. The results indicate that, compared to the dissociation process of hydrates above the freezing point, the gas production behavior of hydrate reservoirs at a dissociation temperature of 272.15 K exhibits a delayed response with prolonged slow dissociation times. Lower temperatures are advantageous for sustaining gas production rates. Notably, the no-solid-phase dissociation method exhibits significant superiority, particularly in high water saturation reservoirs. Within high water saturation reservoirs, methane hydrates at 272.15 K exhibit an increased dissociation rate, rising from 68% at 278.15 K to 78%. In the case of hydrates below the freezing point, the controlling step for no-solid-phase dissociation is identified as the gas diffusion process. This method effectively mitigates the hindrance imposed by the water layer on gas diffusion, ensuring enhanced mass transfer efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang, X.Y., Chen, J.W., Guo, Y.L., et al.: Development status of combustible ice mining and test production technologies. Oil Gas Gathering 38(1), 7–15 (2020) Tang, X.Y., Chen, J.W., Guo, Y.L., et al.: Development status of combustible ice mining and test production technologies. Oil Gas Gathering 38(1), 7–15 (2020)
2.
Zurück zum Zitat Wan, Q.C., Si, H., Li, B., et al.: Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization. Appl. Energy 278, 115612 (2020) Wan, Q.C., Si, H., Li, B., et al.: Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization. Appl. Energy 278, 115612 (2020)
3.
Zurück zum Zitat Jin, G., Xu, T., Xin, X., Wei, M., Liu, C.: Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in shenhu area, South China Sea. J. Nat. Gas Sci. Eng. 33, 497–508 (2016)CrossRef Jin, G., Xu, T., Xin, X., Wei, M., Liu, C.: Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in shenhu area, South China Sea. J. Nat. Gas Sci. Eng. 33, 497–508 (2016)CrossRef
4.
Zurück zum Zitat Li, X.Y., Li, X.S., et al.: The determining factor of hydrate dissociation rate in the sediments with different water saturations. Energy 202, 117690 (2023) Li, X.Y., Li, X.S., et al.: The determining factor of hydrate dissociation rate in the sediments with different water saturations. Energy 202, 117690 (2023)
5.
Zurück zum Zitat Yang, L., et al.: The status of exploitation techniques of natural gas hydrate. Chin. J. Chem. Eng. 27(9), 2133–2147 (2019)CrossRef Yang, L., et al.: The status of exploitation techniques of natural gas hydrate. Chin. J. Chem. Eng. 27(9), 2133–2147 (2019)CrossRef
6.
Zurück zum Zitat Wei, N., et al.: Multiphase non-equilibrium pipe flow behaviors in the solid fluidization exploitation of marine natural gas hydrate reservoir. Energy Sci. Eng. 6(6), 760–782 (2018)CrossRef Wei, N., et al.: Multiphase non-equilibrium pipe flow behaviors in the solid fluidization exploitation of marine natural gas hydrate reservoir. Energy Sci. Eng. 6(6), 760–782 (2018)CrossRef
7.
Zurück zum Zitat Liu, Y., Hou, J., Zhao, H., Liu, X., Xia, Z.: A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 144, 265–278 (2018)CrossRef Liu, Y., Hou, J., Zhao, H., Liu, X., Xia, Z.: A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 144, 265–278 (2018)CrossRef
8.
Zurück zum Zitat Wang, B., Dong, H., Fan, Z., Zhao, J., Song, Y.: Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation. Energy Procedia 105, 4713–4717 (2017)CrossRef Wang, B., Dong, H., Fan, Z., Zhao, J., Song, Y.: Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation. Energy Procedia 105, 4713–4717 (2017)CrossRef
9.
Zurück zum Zitat Huang, B., Xue, W., Wang, Y., Zhang, T.: Review of theory and practice on natural gas hydrate. In: Natural Resources and Sustainable Development, pts 1–3, pp. 149–160 (2012) Huang, B., Xue, W., Wang, Y., Zhang, T.: Review of theory and practice on natural gas hydrate. In: Natural Resources and Sustainable Development, pts 1–3, pp. 149–160 (2012)
10.
Zurück zum Zitat Chen, B., Yang, M., Sun, H., Wang, D., Jiang, L., Song, Y.: Visualization study on the promotion of depressurization and water flow erosion for gas hydrate production. Energy Procedia 158, 5563–5568 (2019)CrossRef Chen, B., Yang, M., Sun, H., Wang, D., Jiang, L., Song, Y.: Visualization study on the promotion of depressurization and water flow erosion for gas hydrate production. Energy Procedia 158, 5563–5568 (2019)CrossRef
11.
Zurück zum Zitat Wang, B., Fan, Z., Wang, P., Liu, Y., Zhao, J., Song, Y.: Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Appl. Energy 227, 624–633 (2018)CrossRef Wang, B., Fan, Z., Wang, P., Liu, Y., Zhao, J., Song, Y.: Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Appl. Energy 227, 624–633 (2018)CrossRef
12.
Zurück zum Zitat Feng, J.C., Wang, Y., Li, X.S.: Large scale experimental evaluation to methane hydrate dissociation below quadruple point by depressurization assisted with heat stimulation. Energy Procedia 142, 4117–4123 (2017)CrossRef Feng, J.C., Wang, Y., Li, X.S.: Large scale experimental evaluation to methane hydrate dissociation below quadruple point by depressurization assisted with heat stimulation. Energy Procedia 142, 4117–4123 (2017)CrossRef
13.
Zurück zum Zitat Maslin, M., Owen, M., Betts, R., Day, S., Jones, T.D., Ridgwell, A.: Gas hydrates: Past and future geohazard? Philos. Trans. R. Soc. A 368, 2369–2393 (2010)CrossRef Maslin, M., Owen, M., Betts, R., Day, S., Jones, T.D., Ridgwell, A.: Gas hydrates: Past and future geohazard? Philos. Trans. R. Soc. A 368, 2369–2393 (2010)CrossRef
14.
Zurück zum Zitat Li, B., Li, X.S., Li, G., Feng, J.C., Wang, Y.: Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator. Appl. Energy 129, 274–286 (2014)CrossRef Li, B., Li, X.S., Li, G., Feng, J.C., Wang, Y.: Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator. Appl. Energy 129, 274–286 (2014)CrossRef
15.
Zurück zum Zitat Yu, M., Li, W., Jiang, L., Wang, X., Yang, M., Song, Y.: Numerical study of gas production from methane hydrate deposits by depressurization at 274k. Appl. Energy 227, 28–37 (2018)CrossRef Yu, M., Li, W., Jiang, L., Wang, X., Yang, M., Song, Y.: Numerical study of gas production from methane hydrate deposits by depressurization at 274k. Appl. Energy 227, 28–37 (2018)CrossRef
16.
Zurück zum Zitat Zhao, J., et al.: Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization. Appl. Energy 260, 114275 (2020)CrossRef Zhao, J., et al.: Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization. Appl. Energy 260, 114275 (2020)CrossRef
17.
Zurück zum Zitat Li, D.X., Ren, S.R., Zhang, L., Liu, Y.X.: Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors. J. Petrol. Sci. Eng. 146, 552–560 (2016)CrossRef Li, D.X., Ren, S.R., Zhang, L., Liu, Y.X.: Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors. J. Petrol. Sci. Eng. 146, 552–560 (2016)CrossRef
18.
Zurück zum Zitat Yang, M., Fu, Z., Zhao, Y., Jiang, L., Zhao, J., Song, Y.: Effect of depressurization pressure on methane recovery from hydrate–gas–water bearing sediments. Fuel 166, 419–426 (2016)CrossRef Yang, M., Fu, Z., Zhao, Y., Jiang, L., Zhao, J., Song, Y.: Effect of depressurization pressure on methane recovery from hydrate–gas–water bearing sediments. Fuel 166, 419–426 (2016)CrossRef
19.
Zurück zum Zitat Sun, X., Wang, L., Luo, H., Song, Y., Li, Y.: Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization. J. Petrol. Sci. Eng. 177, 971–982 (2019)CrossRef Sun, X., Wang, L., Luo, H., Song, Y., Li, Y.: Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization. J. Petrol. Sci. Eng. 177, 971–982 (2019)CrossRef
20.
Zurück zum Zitat Li, X.Y., Li, X.S., et al.: The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes. Energy 215, 119129 (2020) Li, X.Y., Li, X.S., et al.: The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes. Energy 215, 119129 (2020)
22.
Zurück zum Zitat Vlasov, V.A.: Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure. Chem. Eng. Sci. 215, 115443 (2019) Vlasov, V.A.: Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure. Chem. Eng. Sci. 215, 115443 (2019)
23.
Zurück zum Zitat Vlasov, V.A.: Diffusion model of gas hydrate dissociation into ice and gas: simulation of the self-preservation effect. Int. J. Heat Mass Transf. 102, 631–636 (2016) Vlasov, V.A.: Diffusion model of gas hydrate dissociation into ice and gas: simulation of the self-preservation effect. Int. J. Heat Mass Transf. 102, 631–636 (2016)
Metadaten
Titel
Study on the Dissociation Characteristics of Methane Hydrates in Porous Media above and below the Freezing Point
verfasst von
Pei Liu
Yanhong Wang
Shuanshi Fan
Xuemei Lang
Gang Li
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_40