Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2007

01.04.2007

Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

verfasst von: Sumit Agarwal, Clyde L. Briant, Paul E. Krajewski, Allan F. Bower, Eric M. Taleff

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289–1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249–1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barnes A.J. (1994) Superplastic Forming of Aluminum Alloys. Mater. Sci. Forum 170–172:701–714CrossRef Barnes A.J. (1994) Superplastic Forming of Aluminum Alloys. Mater. Sci. Forum 170–172:701–714CrossRef
2.
Zurück zum Zitat J.G. Schroth, “General Motors Quick Plastic Forming process,” Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Eds., TMS, 2004, p 9–20 J.G. Schroth, “General Motors Quick Plastic Forming process,” Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Eds., TMS, 2004, p 9–20
3.
Zurück zum Zitat Verma R., Ghosh A.K., Kim S., Kim C. (1995) Grain Refinement and Superplasticity in 5083 Al. Mater. Sci. Eng. A191:143–150CrossRef Verma R., Ghosh A.K., Kim S., Kim C. (1995) Grain Refinement and Superplasticity in 5083 Al. Mater. Sci. Eng. A191:143–150CrossRef
4.
Zurück zum Zitat Verma R., Friedman P.A., Ghosh A.K., Kim S., Kim C. (1996) Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 Al Alloy Sheet. Metall. Mater. Trans. A 27A:1889–1898 Verma R., Friedman P.A., Ghosh A.K., Kim S., Kim C. (1996) Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 Al Alloy Sheet. Metall. Mater. Trans. A 27A:1889–1898
5.
Zurück zum Zitat Khaleel M.A., Smith M.T., Pitman S.G. (1997) The Effect of Strain Rate History on the Ductility in Superplastic AA-5083. Scripta Mater. 37(12):1909–1915CrossRef Khaleel M.A., Smith M.T., Pitman S.G. (1997) The Effect of Strain Rate History on the Ductility in Superplastic AA-5083. Scripta Mater. 37(12):1909–1915CrossRef
6.
Zurück zum Zitat Iwasaki H., Hosokawa H., Mori T., Tagata T., Higashi K. (1998) Quantitative Assessment of Superplastic Deformation Behavior in a Commercial 5083 Alloy. Mat. Sci. Eng. A. A252:199–202CrossRef Iwasaki H., Hosokawa H., Mori T., Tagata T., Higashi K. (1998) Quantitative Assessment of Superplastic Deformation Behavior in a Commercial 5083 Alloy. Mat. Sci. Eng. A. A252:199–202CrossRef
7.
Zurück zum Zitat Patankar S.N., Jen T.M. (1998) Strain Rate Insensitive Plasticity in Aluminum Alloy 5083. Scripta Mater. 38(8):1255–1261CrossRef Patankar S.N., Jen T.M. (1998) Strain Rate Insensitive Plasticity in Aluminum Alloy 5083. Scripta Mater. 38(8):1255–1261CrossRef
8.
Zurück zum Zitat Hsiao I.C., Huang J.C. (1999) Development of Low Temperature Superplasticity in Commercial 5083 Al-Mg Alloys. Scripta Mater. 40(6):697–703CrossRef Hsiao I.C., Huang J.C. (1999) Development of Low Temperature Superplasticity in Commercial 5083 Al-Mg Alloys. Scripta Mater. 40(6):697–703CrossRef
9.
Zurück zum Zitat Martin C.F., Blandin J.J., Salvo L. (2001) Variations in Microstructure and Texture during High Temperature Deformation of Al–Mg Alloy. Mater. Sci. Eng. A 297:212–222CrossRef Martin C.F., Blandin J.J., Salvo L. (2001) Variations in Microstructure and Texture during High Temperature Deformation of Al–Mg Alloy. Mater. Sci. Eng. A 297:212–222CrossRef
10.
Zurück zum Zitat Cleveland R.M., Ghosh A.K., Bradley J.R. (2003) Comparison of Superplastic Behavior in Two 5083 Aluminum Alloys. Mater. Sci. Eng. A. A351(1–2):228–236 Cleveland R.M., Ghosh A.K., Bradley J.R. (2003) Comparison of Superplastic Behavior in Two 5083 Aluminum Alloys. Mater. Sci. Eng. A. A351(1–2):228–236
11.
Zurück zum Zitat Sherby O.D., Wadsworth J. (1989) Superplasticity-Recent Advances and Future Directions. Prog. Mater. Sci. 33:169–221CrossRef Sherby O.D., Wadsworth J. (1989) Superplasticity-Recent Advances and Future Directions. Prog. Mater. Sci. 33:169–221CrossRef
12.
Zurück zum Zitat Kulas M.-A., Green W.P., Taleff E.M., Krajewski P.E., McNelley T.R. (2005) Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A 36(5):1249–1261CrossRef Kulas M.-A., Green W.P., Taleff E.M., Krajewski P.E., McNelley T.R. (2005) Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A 36(5):1249–1261CrossRef
13.
Zurück zum Zitat Agarwal S., Krajewski P.E., Briant C.L. (2004) Texture Development and Dynamic Recrystallization in AA5083 during Superplastic Forming at Various Strain Rates. Taleff E.M., Friedman P.A., Krajewski P.E., Mishra R.S., Schroth J.G. (eds) Advances in Superplasticity and Superplastic Forming, Charlotte, TMS, p 95–108 Agarwal S., Krajewski P.E., Briant C.L. (2004) Texture Development and Dynamic Recrystallization in AA5083 during Superplastic Forming at Various Strain Rates. Taleff E.M., Friedman P.A., Krajewski P.E., Mishra R.S., Schroth J.G. (eds) Advances in Superplasticity and Superplastic Forming, Charlotte, TMS, p 95–108
14.
Zurück zum Zitat Bower A.F., Wininger E. (2004) A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation. J. Mech. Phys. Solids 52:1289–1317CrossRef Bower A.F., Wininger E. (2004) A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation. J. Mech. Phys. Solids 52:1289–1317CrossRef
15.
Zurück zum Zitat Pierce D., Asaro R.J., Needleman A. (1983) Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metall. 31:1951–1976CrossRef Pierce D., Asaro R.J., Needleman A. (1983) Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metall. 31:1951–1976CrossRef
16.
Zurück zum Zitat H. Frost, M.F. Ashby, Deformation Mechanism Maps, 1st ed., Chap. 4, Pergamon Press, 1982, p 20–29 H. Frost, M.F. Ashby, Deformation Mechanism Maps, 1st ed., Chap. 4, Pergamon Press, 1982, p 20–29
17.
Zurück zum Zitat Raj R., Ashby M.F. (1971) On Grain Boundary Sliding and Diffusion Creep. Metal. Trans. 2(4):1113–1127 Raj R., Ashby M.F. (1971) On Grain Boundary Sliding and Diffusion Creep. Metal. Trans. 2(4):1113–1127
Metadaten
Titel
Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation
verfasst von
Sumit Agarwal
Clyde L. Briant
Paul E. Krajewski
Allan F. Bower
Eric M. Taleff
Publikationsdatum
01.04.2007
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2007
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-007-9028-0

Weitere Artikel der Ausgabe 2/2007

Journal of Materials Engineering and Performance 2/2007 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.