Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.10.2019 | Focus | Ausgabe 11/2020

Soft Computing 11/2020

Exploration of social media for sentiment analysis using deep learning

Zeitschrift:
Soft Computing > Ausgabe 11/2020
Autoren:
Liang-Chu Chen, Chia-Meng Lee, Mu-Yen Chen
Wichtige Hinweise
Communicated by Mu-Yen Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the rapid growth of web content from social media, such studies as online opinion mining or sentiment analysis of text have started receiving attention from government, industry, and academic sectors. In recent years, sentiment analysis has not only emerged under knowledge fusion in the big data era, but has also become a popular research topic in the area of artificial intelligence and machine learning. This study used the Militarylife PTT board of Taiwan’s largest online forum as the source of its experimental data. The purpose of this study was to construct a sentiment analysis framework and processes for social media in order to propose a self-developed military sentiment dictionary for improving sentiment classification and analyze the performance of different deep learning models with various parameter calibration combinations. The experimental results show that the accuracy and F1-measure of the model that combines existing sentiment dictionaries and the self-developed military sentiment dictionary are better than the results from using existing sentiment dictionaries only. Furthermore, the prediction model trained using the activation function, Tanh, and when the number of Bi-LSTM network layers is two, the accuracy and F1-measure have an even better performance for sentiment classification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2020

Soft Computing 11/2020 Zur Ausgabe

Premium Partner

    Bildnachweise