Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.06.2014

Exploring how extracellular electric field modulates neuron activity through dynamical analysis of a two-compartment neuron model

verfasst von: Guo-Sheng Yi, Jiang Wang, Xi-Le Wei, Kai-Ming Tsang, Wai-Lok Chan, Bin Deng, Chun-Xiao Han

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To investigate how extracellular electric field modulates neuron activity, a reduced two-compartment neuron model in the presence of electric field is introduced in this study. Depending on neuronal geometric and internal coupling parameters, the behaviors of the model have been studied extensively. The neuron model can exist in quiescent state or repetitive spiking state in response to electric field stimulus. Negative electric field mainly acts as inhibitory stimulus to the neuron, positive weak electric field could modulate spiking frequency and spike timing when the neuron is already active, and positive electric fields with sufficient intensity could directly trigger neuronal spiking in the absence of other stimulations. By bifurcation analysis, it is observed that there is saddle-node on invariant circle bifurcation, supercritical Hopf bifurcation and subcritical Hopf bifurcation appearing in the obtained two parameter bifurcation diagrams. The bifurcation structures and electric field thresholds for triggering neuron firing are determined by neuronal geometric and coupling parameters. The model predicts that the neurons with a nonsymmetric morphology between soma and dendrite, are more sensitive to electric field stimulus than those with the spherical structure. These findings suggest that neuronal geometric features play a crucial role in electric field effects on the polarization of neuronal compartments. Moreover, by determining the electric field threshold of our biophysical model, we could accurately distinguish between suprathreshold and subthreshold electric fields. Our study highlights the effects of extracellular electric field on neuronal activity from the biophysical modeling point of view. These insights into the dynamical mechanism of electric field may contribute to the investigation and development of electromagnetic therapies, and the model in our study could be further extended to a neuronal network in which the effects of electric fields on network activity may be investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bawin, S. M., Sheppard, A. R., Mahoney, M. D., & Adey, W. R. (1984). Influences of sinusoidal electric fields on excitability in the rat hippocampal slice. Brain Research Reviews, 323(2), 227–237.CrossRef Bawin, S. M., Sheppard, A. R., Mahoney, M. D., & Adey, W. R. (1984). Influences of sinusoidal electric fields on excitability in the rat hippocampal slice. Brain Research Reviews, 323(2), 227–237.CrossRef
Zurück zum Zitat Berzhanskaya, J., Chernyy, N., Gluckman, B. J., Schiff, S. J., & Ascoli, G. A. (2013). Modulation of hippocampal rhythms by subthreshold electric fields and network topology. Journal of Computational Neuroscience, 34, 369–389.PubMedCrossRef Berzhanskaya, J., Chernyy, N., Gluckman, B. J., Schiff, S. J., & Ascoli, G. A. (2013). Modulation of hippocampal rhythms by subthreshold electric fields and network topology. Journal of Computational Neuroscience, 34, 369–389.PubMedCrossRef
Zurück zum Zitat Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., et al. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(Pt 1), 175–190. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., et al. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(Pt 1), 175–190.
Zurück zum Zitat Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. Journal of Physiology, 371, 89–114.PubMedCentralPubMed Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. Journal of Physiology, 371, 89–114.PubMedCentralPubMed
Zurück zum Zitat Chan, C. Y., Houndsgaard, J., & Nicholson, C. (1988). Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. Journal of Physiology, 402, 751–771. Chan, C. Y., Houndsgaard, J., & Nicholson, C. (1988). Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. Journal of Physiology, 402, 751–771.
Zurück zum Zitat Duong, D. H., & Chang, T. (1998). The influence of electric fields on the epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Neurological Research, 20(6), 542–548.PubMed Duong, D. H., & Chang, T. (1998). The influence of electric fields on the epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Neurological Research, 20(6), 542–548.PubMed
Zurück zum Zitat Durand, D. M. (2003). Electric field effects in hyperexcitable neural tissue: a review. Radiation Protection Dosimetry, 106(4), 325–331.PubMedCrossRef Durand, D. M. (2003). Electric field effects in hyperexcitable neural tissue: a review. Radiation Protection Dosimetry, 106(4), 325–331.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to Xppaut for researchers and students. Philadelphia: SIAM.CrossRef Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to Xppaut for researchers and students. Philadelphia: SIAM.CrossRef
Zurück zum Zitat Francis, J. T., Gluckman, B. J., & Schiff, S. J. (2003). Sensitivity of neurons to weak electric fields. The Journal of Neuroscience, 23(19), 7255–7261.PubMed Francis, J. T., Gluckman, B. J., & Schiff, S. J. (2003). Sensitivity of neurons to weak electric fields. The Journal of Neuroscience, 23(19), 7255–7261.PubMed
Zurück zum Zitat Gluckman, B. J., Neel, E. J., Netoff, T. I., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996). Electric field suppression of epileptiform activity in hippocampal slices. Journal of Neurophysiology, 76(6), 4202–4205.PubMed Gluckman, B. J., Neel, E. J., Netoff, T. I., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996). Electric field suppression of epileptiform activity in hippocampal slices. Journal of Neurophysiology, 76(6), 4202–4205.PubMed
Zurück zum Zitat Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field control of epileptic seizures. The Journal of Neuroscience, 21(2), 590–600.PubMed Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field control of epileptic seizures. The Journal of Neuroscience, 21(2), 590–600.PubMed
Zurück zum Zitat Izhikevich, E. M. (2005). Dynamical systems in neuroscience: The geometry of excitability and bursting. London: The MIT Press. Izhikevich, E. M. (2005). Dynamical systems in neuroscience: The geometry of excitability and bursting. London: The MIT Press.
Zurück zum Zitat Jefferys, J. G. R. (1981). Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. Journal of Physiology, 319, 143–152.PubMedCentralPubMed Jefferys, J. G. R. (1981). Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. Journal of Physiology, 319, 143–152.PubMedCentralPubMed
Zurück zum Zitat Lopez, L., Chan, C. Y., Okada, Y. C., & Nicholson, C. (1991). Multimodal characterization of population responses evoked by applied electric field in vitro: extracellular potential, magnetic evoked field, transmembrane potential, and current source density analysis. Journal of Neuroscience, 11(7), 1998–2010. Lopez, L., Chan, C. Y., Okada, Y. C., & Nicholson, C. (1991). Multimodal characterization of population responses evoked by applied electric field in vitro: extracellular potential, magnetic evoked field, transmembrane potential, and current source density analysis. Journal of Neuroscience, 11(7), 1998–2010.
Zurück zum Zitat Mclntyre, C. C., & Grill, W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysical Journal, 76(2), 878–888.CrossRef Mclntyre, C. C., & Grill, W. M. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysical Journal, 76(2), 878–888.CrossRef
Zurück zum Zitat Nagarajan, S. S., Durand, D. M., & Warman, E. N. (1993). Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Transactions on Biomedical Engineering, 40(11), 1175–1188.PubMedCrossRef Nagarajan, S. S., Durand, D. M., & Warman, E. N. (1993). Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Transactions on Biomedical Engineering, 40(11), 1175–1188.PubMedCrossRef
Zurück zum Zitat Park, E. H., So, P., Barreto, E., Gluckman, B. J., & Schiff, S. J. (2003). Electric field modulation of synchronization in neuronal networks. Neurocomputing, 52–54, 169–175.CrossRef Park, E. H., So, P., Barreto, E., Gluckman, B. J., & Schiff, S. J. (2003). Electric field modulation of synchronization in neuronal networks. Neurocomputing, 52–54, 169–175.CrossRef
Zurück zum Zitat Park, E. H., Barreto, E., Gluckman, B. J., Schiff, S. J., & So, P. (2005). A model of the effects of applied electric fields on neuronal synchronization. Journal of Computational Neuroscience, 19(1), 53–70.PubMedCentralPubMedCrossRef Park, E. H., Barreto, E., Gluckman, B. J., Schiff, S. J., & So, P. (2005). A model of the effects of applied electric fields on neuronal synchronization. Journal of Computational Neuroscience, 19(1), 53–70.PubMedCentralPubMedCrossRef
Zurück zum Zitat Pashut, T., Wolfus, S., Friedman, A., Lavidor, M., Bar-Gad, I., Yeshurun, Y., et al. (2011). Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Computational Biology, 7(3), e1002022.PubMedCentralPubMedCrossRef Pashut, T., Wolfus, S., Friedman, A., Lavidor, M., Bar-Gad, I., Yeshurun, Y., et al. (2011). Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Computational Biology, 7(3), e1002022.PubMedCentralPubMedCrossRef
Zurück zum Zitat Peterchev, A. V., Rosa, M. A., Deng, Z., Prudic, J., & Lisanby, S. H. (2010). ECT stimulus parameters: rethinking dosage. The Journal of ECT, 26(3), 159–174.PubMedCentralPubMedCrossRef Peterchev, A. V., Rosa, M. A., Deng, Z., Prudic, J., & Lisanby, S. H. (2010). ECT stimulus parameters: rethinking dosage. The Journal of ECT, 26(3), 159–174.PubMedCentralPubMedCrossRef
Zurück zum Zitat Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., et al. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimulation, 5, 435–453.PubMedCentralPubMedCrossRef Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., et al. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimulation, 5, 435–453.PubMedCentralPubMedCrossRef
Zurück zum Zitat Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLOS Computational Biology, 4(10), e1000198.PubMedCentralPubMedCrossRef Prescott, S. A., De Koninck, Y., & Sejnowski, T. J. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLOS Computational Biology, 4(10), e1000198.PubMedCentralPubMedCrossRef
Zurück zum Zitat Purpura, D. P., & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166–185.PubMed Purpura, D. P., & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166–185.PubMed
Zurück zum Zitat Radman, T., Su, Y., Hi An, J., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. The Journal of Neuroscience, 27(11), 3030–3036.PubMedCrossRef Radman, T., Su, Y., Hi An, J., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. The Journal of Neuroscience, 27(11), 3030–3036.PubMedCrossRef
Zurück zum Zitat Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in sub- and suprathreshold uniform electric field stimulation. Brain Stimulation, 2(4), 215–228.PubMedCentralPubMedCrossRef Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in sub- and suprathreshold uniform electric field stimulation. Brain Stimulation, 2(4), 215–228.PubMedCentralPubMedCrossRef
Zurück zum Zitat Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. The Journal of Neuroscience, 30(45), 15067–15079.PubMedCentralPubMedCrossRef Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. The Journal of Neuroscience, 30(45), 15067–15079.PubMedCentralPubMedCrossRef
Zurück zum Zitat Schiff, S. J. (2012). Neural control engineering. Cambridge: MIT Press. Schiff, S. J. (2012). Neural control engineering. Cambridge: MIT Press.
Zurück zum Zitat Svirskis, G., Baginskas, A., Hounsgaard, J., & Gutman, A. (1997). Electrotonic measurements by electric field-induced polarization in neurons: theory and experimental estimation. Biophysical Journal, 73(6), 3004–3015.PubMedCentralPubMedCrossRef Svirskis, G., Baginskas, A., Hounsgaard, J., & Gutman, A. (1997). Electrotonic measurements by electric field-induced polarization in neurons: theory and experimental estimation. Biophysical Journal, 73(6), 3004–3015.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50(6), 1139–1156.PubMedCentralPubMedCrossRef Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50(6), 1139–1156.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9, 527–565.PubMedCrossRef Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9, 527–565.PubMedCrossRef
Metadaten
Titel
Exploring how extracellular electric field modulates neuron activity through dynamical analysis of a two-compartment neuron model
verfasst von
Guo-Sheng Yi
Jiang Wang
Xi-Le Wei
Kai-Ming Tsang
Wai-Lok Chan
Bin Deng
Chun-Xiao Han
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0479-z

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe

Premium Partner