Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.06.2014

On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes

verfasst von: V. Z. Marmarelis, D. C. Shin, D. Song, R. E. Hampson, S. A. Deadwyler, T. W. Berger

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed “input–output channels of communication” corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott, L. F. (1999). Lapique’s introduction of the integrate-and-fire model neuron. Brain Research Bulletin, 50, 303–304.PubMedCrossRef Abbott, L. F. (1999). Lapique’s introduction of the integrate-and-fire model neuron. Brain Research Bulletin, 50, 303–304.PubMedCrossRef
Zurück zum Zitat Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters, 310, 57–60.PubMedCrossRef Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters, 310, 57–60.PubMedCrossRef
Zurück zum Zitat Anderson, C. H., & Eliasmith, C. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems (computational neuroscience). MIT Press. Anderson, C. H., & Eliasmith, C. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems (computational neuroscience). MIT Press.
Zurück zum Zitat Anderson, C., & Horne, J. A. (2003). Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology, 40, 349–357.PubMedCrossRef Anderson, C., & Horne, J. A. (2003). Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology, 40, 349–357.PubMedCrossRef
Zurück zum Zitat Baker, S. N., Kilner, J. M., Pinches, E. M., & Lemon, R. N. (1999). The role of synchrony and oscillations in the motor output. Experimental Brain Research, 128, 109–117.PubMedCrossRef Baker, S. N., Kilner, J. M., Pinches, E. M., & Lemon, R. N. (1999). The role of synchrony and oscillations in the motor output. Experimental Brain Research, 128, 109–117.PubMedCrossRef
Zurück zum Zitat Benchenane, K., Tiesinga, P. H., & Battaglia, F. P. (2011). Oscillations in the prefrontal cortex: a gateway to memory and attention. Current Opinion in Neurobiology, 21, 1–11.CrossRef Benchenane, K., Tiesinga, P. H., & Battaglia, F. P. (2011). Oscillations in the prefrontal cortex: a gateway to memory and attention. Current Opinion in Neurobiology, 21, 1–11.CrossRef
Zurück zum Zitat Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988). Nonlinear systems analysis of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. Journal of Neurophysiology, 60, 1077–1094. Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988). Nonlinear systems analysis of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. Journal of Neurophysiology, 60, 1077–1094.
Zurück zum Zitat Berger, T. W., Song, D., Chan, R. H., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multi-output nonlinear dynamic modeling. Proceedings of the IEEE, 98, 356–374.PubMedCentralPubMedCrossRef Berger, T. W., Song, D., Chan, R. H., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multi-output nonlinear dynamic modeling. Proceedings of the IEEE, 98, 356–374.PubMedCentralPubMedCrossRef
Zurück zum Zitat Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8, 046017.PubMedCentralPubMedCrossRef Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8, 046017.PubMedCentralPubMedCrossRef
Zurück zum Zitat Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., et al. (2012). A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211.PubMedCentralPubMedCrossRef Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., et al. (2012). A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brandenberger, G. (2003). The Ulradien rhythm of sleep: diverse relations with pituitary and adrenal hormones. Revue Neurologique, 159(11), S5–S10. Brandenberger, G. (2003). The Ulradien rhythm of sleep: diverse relations with pituitary and adrenal hormones. Revue Neurologique, 159(11), S5–S10.
Zurück zum Zitat Buzsaki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15, 827–840.PubMedCrossRef Buzsaki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15, 827–840.PubMedCrossRef
Zurück zum Zitat Canolty, R. T., Ganguly, K., Kennerley, S. W., Cadieu, C. F., Koepsell, K., Wallis, J. D., et al. (2010). Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences of the United States of America, 107, 17356–17361.PubMedCentralPubMedCrossRef Canolty, R. T., Ganguly, K., Kennerley, S. W., Cadieu, C. F., Koepsell, K., Wallis, J. D., et al. (2010). Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences of the United States of America, 107, 17356–17361.PubMedCentralPubMedCrossRef
Zurück zum Zitat Churchland, P. S., & Sejnowski, T. J. (1999). The computational brain. MIT Press. Churchland, P. S., & Sejnowski, T. J. (1999). The computational brain. MIT Press.
Zurück zum Zitat Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize Local Field Potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.PubMed Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize Local Field Potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.PubMed
Zurück zum Zitat Deadwyler, S. A., & Hampson, R. E. (2004). Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron, 42, 465–476.PubMedCrossRef Deadwyler, S. A., & Hampson, R. E. (2004). Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron, 42, 465–476.PubMedCrossRef
Zurück zum Zitat Dobson, A. J. (2002). An introduction to generalized linear models. CRC Press. Dobson, A. J. (2002). An introduction to generalized linear models. CRC Press.
Zurück zum Zitat Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaal, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79, 159–173.PubMed Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaal, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79, 159–173.PubMed
Zurück zum Zitat Eeckman, F. H. (1992). Neural systems: Analysis and modeling. Eeckman, F. H. (1992). Neural systems: Analysis and modeling.
Zurück zum Zitat Ekstrom, A. D., Caplan, J., Ho, E., Shattuck, K., Fried, I., & Kahana, M. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15, 881–889.PubMedCrossRef Ekstrom, A. D., Caplan, J., Ho, E., Shattuck, K., Fried, I., & Kahana, M. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15, 881–889.PubMedCrossRef
Zurück zum Zitat Fetz, E. E., Chen, D., Murthy, V. N., & Matsumura, M. (2000). Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex. Journal of Physiology, Paris, 94, 323–331.PubMedCrossRef Fetz, E. E., Chen, D., Murthy, V. N., & Matsumura, M. (2000). Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex. Journal of Physiology, Paris, 94, 323–331.PubMedCrossRef
Zurück zum Zitat FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics, 17, 257–278.CrossRef FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics, 17, 257–278.CrossRef
Zurück zum Zitat Fox, S. E., Wolfson, S., & Ranck, J. B. J. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Experimental Brain Research, 62, 495–508.PubMedCrossRef Fox, S. E., Wolfson, S., & Ranck, J. B. J. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Experimental Brain Research, 62, 495–508.PubMedCrossRef
Zurück zum Zitat Friedrich, R. W., Habermann, C. J., & Laurent, G. (2004). Multiplexingusing synchrony in the zebra fish olfactory bulb. Nature Neuroscience, 7, 862–871.PubMedCrossRef Friedrich, R. W., Habermann, C. J., & Laurent, G. (2004). Multiplexingusing synchrony in the zebra fish olfactory bulb. Nature Neuroscience, 7, 862–871.PubMedCrossRef
Zurück zum Zitat Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.PubMedCrossRef Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.PubMedCrossRef
Zurück zum Zitat Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30, 309–316.PubMedCrossRef Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30, 309–316.PubMedCrossRef
Zurück zum Zitat Gabor, S., Hangya, B., Hernadi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30, 13578–13585.CrossRef Gabor, S., Hangya, B., Hernadi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30, 13578–13585.CrossRef
Zurück zum Zitat Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Fuqua, J., Gerhardt, G. A., et al. (2012a). A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 184–197. doi:10.1109/TNSRE.2012.2189163. PMID: 22438334.PubMedCentralPubMedCrossRef Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Fuqua, J., Gerhardt, G. A., et al. (2012a). A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 184–197. doi:10.​1109/​TNSRE.​2012.​2189163. PMID: 22438334.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Riley, M. R., Goonawardena, A. V., et al. (2012b). Closing the loop for memory prostheses: detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 510–525. doi:10.1109/TNSRE.2012.2190942. PMID: 22498704.PubMedCentralPubMedCrossRef Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Riley, M. R., Goonawardena, A. V., et al. (2012b). Closing the loop for memory prostheses: detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 510–525. doi:10.​1109/​TNSRE.​2012.​2190942. PMID: 22498704.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hampson, R. E., Gerhardt, G. A., Marmarelis, V. Z., Song, D., Opris, I., Santos, L., et al. (2012c). Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. Journal of Neural Engineering, 9(5), 056012. doi:10.1088/1741-2560/9/5/056012.PubMedCentralPubMedCrossRef Hampson, R. E., Gerhardt, G. A., Marmarelis, V. Z., Song, D., Opris, I., Santos, L., et al. (2012c). Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. Journal of Neural Engineering, 9(5), 056012. doi:10.​1088/​1741-2560/​9/​5/​056012.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–817.PubMedCrossRef Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–817.PubMedCrossRef
Zurück zum Zitat Hertz, J., Krogh, A., Palmer, R.G. (1991). Introduction to the theory of neural computation. Addison-Wesley. Hertz, J., Krogh, A., Palmer, R.G. (1991). Introduction to the theory of neural computation. Addison-Wesley.
Zurück zum Zitat Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Sinauer Associates. Hille, B. (2001). Ionic channels of excitable membranes (3rd ed.). Sinauer Associates.
Zurück zum Zitat Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London, Series B: Biological Sciences, 221, 87–102.CrossRef Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London, Series B: Biological Sciences, 221, 87–102.CrossRef
Zurück zum Zitat Hobson, J., & Pace-Schott, E. (2002). The cognitive neuroscience of sleep: neuronal systems, con sciousness and learning. Nature Reviews Neuroscience, 3, 679–693.PubMedCrossRef Hobson, J., & Pace-Schott, E. (2002). The cognitive neuroscience of sleep: neuronal systems, con sciousness and learning. Nature Reviews Neuroscience, 3, 679–693.PubMedCrossRef
Zurück zum Zitat Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMedCentralPubMed Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMedCentralPubMed
Zurück zum Zitat Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.PubMedCentralPubMedCrossRef Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hyman, J., Zilli, E., Paley, A., & Hasselmo, M. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus, 15, 739–749.PubMedCrossRef Hyman, J., Zilli, E., Paley, A., & Hasselmo, M. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus, 15, 739–749.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience: Geometry of excitability and bursting. MIT Press. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: Geometry of excitability and bursting. MIT Press.
Zurück zum Zitat Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science, 105, 3593–3598.CrossRef Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science, 105, 3593–3598.CrossRef
Zurück zum Zitat Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. NeuroImage, 15, 978–987.CrossRef Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. NeuroImage, 15, 978–987.CrossRef
Zurück zum Zitat Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity in humans. Journal of Neuroscience, 27, 3839–3844.PubMedCrossRef Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity in humans. Journal of Neuroscience, 27, 3839–3844.PubMedCrossRef
Zurück zum Zitat Jensen, O., et al. (2002). Oscillations in the alpha band increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.PubMedCrossRef Jensen, O., et al. (2002). Oscillations in the alpha band increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.PubMedCrossRef
Zurück zum Zitat Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.PubMedCrossRef Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.PubMedCrossRef
Zurück zum Zitat Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology, 3, e402.PubMedCentralPubMedCrossRef Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology, 3, e402.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26, 1669–1672.PubMedCrossRef Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26, 1669–1672.PubMedCrossRef
Zurück zum Zitat Kiss, T., Hoffmann, W. E., & Hajós, M. (2011). Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. The International Journal of Neuropsychopharmacology, 14, 29–42.PubMedCrossRef Kiss, T., Hoffmann, W. E., & Hajós, M. (2011). Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. The International Journal of Neuropsychopharmacology, 14, 29–42.PubMedCrossRef
Zurück zum Zitat Klimesch, W., et al. (1998). Induced alpha-band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.PubMedCrossRef Klimesch, W., et al. (1998). Induced alpha-band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.PubMedCrossRef
Zurück zum Zitat Koch, C., & Segev, I. (1989). Methods in neuronal modeling: From synapses to networks. MIT Press. Koch, C., & Segev, I. (1989). Methods in neuronal modeling: From synapses to networks. MIT Press.
Zurück zum Zitat Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20–50 Hz) neurons in monkey primary somatosensory cortex: activity patterns during initiation of vibratory-cued hand movements. Journal of Comparative Neuroscience, 2, 313–334.CrossRef Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20–50 Hz) neurons in monkey primary somatosensory cortex: activity patterns during initiation of vibratory-cued hand movements. Journal of Comparative Neuroscience, 2, 313–334.CrossRef
Zurück zum Zitat Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21, 573.PubMedCrossRef Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21, 573.PubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Annals of Biomedical Engineering, 25, 239.PubMedCrossRef Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Annals of Biomedical Engineering, 25, 239.PubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. Wiley Interscience & IEEE Press. Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. Wiley Interscience & IEEE Press.
Zurück zum Zitat Marmarelis, V. Z., & Berger, T. W. (2005). General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences, 196, 1–13.PubMedCrossRef Marmarelis, V. Z., & Berger, T. W. (2005). General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences, 196, 1–13.PubMedCrossRef
Zurück zum Zitat Marmarelis, P. Z., & Marmarelis, V. Z. (1978). Analysis of physiological systems: The white-noise approach. Plenum Press. Marmarelis, P. Z., & Marmarelis, V. Z. (1978). Analysis of physiological systems: The white-noise approach. Plenum Press.
Zurück zum Zitat Marmarelis, V. Z., & Orme, M. E. (1993). Modeling of neural systems by use of neuronal modes. IEEE Transactions on Biomedical Engineering, 40, 1149–1158.PubMedCrossRef Marmarelis, V. Z., & Orme, M. E. (1993). Modeling of neural systems by use of neuronal modes. IEEE Transactions on Biomedical Engineering, 40, 1149–1158.PubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z., Zanos, T. P., & Berger, T. W. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations. Annals of Biomedical Engineering, 37, 1654–1667.PubMedCentralPubMedCrossRef Marmarelis, V. Z., Zanos, T. P., & Berger, T. W. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations. Annals of Biomedical Engineering, 37, 1654–1667.PubMedCentralPubMedCrossRef
Zurück zum Zitat Marmarelis, V. Z., Shin, D. C., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2013). Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes. Journal of Comparative Neuroscience, 34(1), 73–87. doi:10.1007/s10827-012-0407-7. PMID: 23011343.CrossRef Marmarelis, V. Z., Shin, D. C., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2013). Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes. Journal of Comparative Neuroscience, 34(1), 73–87. doi:10.​1007/​s10827-012-0407-7. PMID: 23011343.CrossRef
Zurück zum Zitat Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89, 5670–5674.PubMedCentralPubMedCrossRef Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89, 5670–5674.PubMedCentralPubMedCrossRef
Zurück zum Zitat Murthy, V. N., & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. Journal of Neurophysiology, 76, 3949–3982.PubMed Murthy, V. N., & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. Journal of Neurophysiology, 76, 3949–3982.PubMed
Zurück zum Zitat Opris, I., Hampson, R. E., Stanford, T. R., Gerhardt, G. A., & Deadwyler, S. A. (2011). Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. Journal of Cognitive Neuroscience, 23, 1507–1521.PubMedCentralPubMedCrossRef Opris, I., Hampson, R. E., Stanford, T. R., Gerhardt, G. A., & Deadwyler, S. A. (2011). Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. Journal of Cognitive Neuroscience, 23, 1507–1521.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., et al. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100, 7931–7936.PubMedCentralPubMedCrossRef Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., et al. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100, 7931–7936.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rosenblatt, F. (1962). Principles of neurodynamics. Spartan Books. Rosenblatt, F. (1962). Principles of neurodynamics. Spartan Books.
Zurück zum Zitat Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences of the United States of America, 90, 4470–4474.PubMedCentralPubMedCrossRef Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences of the United States of America, 90, 4470–4474.PubMedCentralPubMedCrossRef
Zurück zum Zitat Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 21341–21346.PubMedCentralPubMedCrossRef Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 21341–21346.PubMedCentralPubMedCrossRef
Zurück zum Zitat Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.PubMedCrossRef Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.PubMedCrossRef
Zurück zum Zitat Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(49–65), 111–125. Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(49–65), 111–125.
Zurück zum Zitat Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54, 1053–1066.PubMedCrossRef Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54, 1053–1066.PubMedCrossRef
Zurück zum Zitat Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22, 1340–1351.PubMedCentralPubMedCrossRef Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22, 1340–1351.PubMedCentralPubMedCrossRef
Zurück zum Zitat Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short term memory. Hippocampus, 15, 923–935.PubMedCrossRef Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short term memory. Hippocampus, 15, 923–935.PubMedCrossRef
Zurück zum Zitat von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.CrossRef von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.CrossRef
Zurück zum Zitat Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.CrossRef Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.CrossRef
Zurück zum Zitat Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 336–352.PubMedCentralPubMedCrossRef Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 336–352.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zanos, T. P., Hampson, R. E., Deadwyler, S. A., Berger, T. W., & Marmarelis, V. Z. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part II: application to the rat hippocampus. Annals of Biomedical Engineering, 37, 1668–1682.PubMedCentralPubMedCrossRef Zanos, T. P., Hampson, R. E., Deadwyler, S. A., Berger, T. W., & Marmarelis, V. Z. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part II: application to the rat hippocampus. Annals of Biomedical Engineering, 37, 1668–1682.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156, 238–246.PubMedCentralPubMedCrossRef Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156, 238–246.PubMedCentralPubMedCrossRef
Metadaten
Titel
On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes
verfasst von
V. Z. Marmarelis
D. C. Shin
D. Song
R. E. Hampson
S. A. Deadwyler
T. W. Berger
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0475-3

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe

Premium Partner