Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2020

31.01.2020

Exploring How (Ti + Mo)/C and Ti/Mo Influence the Precipitation Behaviors within Microalloyed Steels: Experimental Evidence and Related Patents Investigation

verfasst von: Chih-Yuan Chen, Lung-Jen Chiang, Chien-Chon Chen, Meng-Hsuan Liao, Jih-Sheng Kuo, Ya-Hsuan Chou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main objective of the present study was to understand the influences of different atomic ratios of Ti/Mo and (Ti + Mo)/C on the precipitation behaviors in Ti-Mo HSLA steels. It was found that the steel with a higher Ti/Mo atomic ratio possessed a large theoretical volume fraction of precipitated carbides, but the ferrite matrix did not achieve a corresponding higher microhardness. On the other hand, the experimental results also indicated that it was not suitable to assess the precipitation strengthening effect of the ferrite matrix based on only one of the atomic factors, i.e., (Ti + Mo)/C or Ti/Mo. In addition, from the present study, similarity of the (Ti + Mo)/C atomic ratios is a prerequisite for comparing the precipitation hardening effects in steels having different Ti/Mo atomic ratios. Besides experimental data, the main deduction is also supported by related patent information, which further corroborates the reliability of the present study. Furthermore, of the two steels with different M/C atomic ratios, the ferrite matrix of the H-(M/C) steel showed a rising trend in Vickers hardness when the isothermal holding time was increased from 5 min to 60 min at 650-700 °C. This higher strengthening ability, which occurs within ferrite grains after holding at longer times, can be ascribed to the higher austenite decomposition rate occurring in the H-(M/C) atomic ratio steel. Therefore, the hardening mechanisms in both kinds of steel are also discussed in the present study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Wint, J. Leung, J.H. Sullivan, D.J. Penney, and Y. Gao, The Galvanic Corrosion of Welded Ultra-Steels Used for Automotive Applications, Corros. Sci., 2018, 136, p 366–373CrossRef N. Wint, J. Leung, J.H. Sullivan, D.J. Penney, and Y. Gao, The Galvanic Corrosion of Welded Ultra-Steels Used for Automotive Applications, Corros. Sci., 2018, 136, p 366–373CrossRef
2.
Zurück zum Zitat Q. Qiaoa, L. Lua, E. Fana, J. Zhao, Y. Liu, G. Peng, Y. Huang, and X. Li, Effects of Nb on Stress Corrosion Cracking of High-Strength Low-Alloy Steel in Simulated Seawater, Int. J. Hydrog. Energy, 2019, 44, p 27962–27973CrossRef Q. Qiaoa, L. Lua, E. Fana, J. Zhao, Y. Liu, G. Peng, Y. Huang, and X. Li, Effects of Nb on Stress Corrosion Cracking of High-Strength Low-Alloy Steel in Simulated Seawater, Int. J. Hydrog. Energy, 2019, 44, p 27962–27973CrossRef
3.
Zurück zum Zitat Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, Formation Mechanism and Control Methods of Acicular Ferrite in HSLA Steels: A Review, J. Mater. Sci. Technol., 2018, 34, p 737–744CrossRef
4.
Zurück zum Zitat M.G.H. Cruz and A. Viecelli, A Methodology for Replacement of Conventional Steel by Microalloyed Steel in Bus Tubular Structures, Mater. Design, 2008, 29, p 539–545CrossRef M.G.H. Cruz and A. Viecelli, A Methodology for Replacement of Conventional Steel by Microalloyed Steel in Bus Tubular Structures, Mater. Design, 2008, 29, p 539–545CrossRef
5.
Zurück zum Zitat M.T. Seiyedbeigi, S.R. Hosseini, and A. Eshaghi, Characterization and Modeling of Hot Deformation Behavior of a Copper-Bearing High-Strength Low-Carbon Steel Microalloyed with Nb, J. Mater. Eng. Perform., 2019, 28, p 4324–4334CrossRef M.T. Seiyedbeigi, S.R. Hosseini, and A. Eshaghi, Characterization and Modeling of Hot Deformation Behavior of a Copper-Bearing High-Strength Low-Carbon Steel Microalloyed with Nb, J. Mater. Eng. Perform., 2019, 28, p 4324–4334CrossRef
6.
Zurück zum Zitat G.K. Mandal, S.S. Das, T. Kumar, A. Kamaraj, K. Mondal, and V.C. Srivastava, Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel, J. Mater. Eng. Perform., 2018, 27, p 6748–6757CrossRef G.K. Mandal, S.S. Das, T. Kumar, A. Kamaraj, K. Mondal, and V.C. Srivastava, Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel, J. Mater. Eng. Perform., 2018, 27, p 6748–6757CrossRef
7.
Zurück zum Zitat S. Clark, V. Janik, A. Rijkenberg, and S. Sridhar, Analysis of the Extent of Interphase Precipitation in V-HSLA Steels through In situ Characterization of the γ/α Transformation, Mater. Charact., 2016, 115, p 83–89CrossRef S. Clark, V. Janik, A. Rijkenberg, and S. Sridhar, Analysis of the Extent of Interphase Precipitation in V-HSLA Steels through In situ Characterization of the γ/α Transformation, Mater. Charact., 2016, 115, p 83–89CrossRef
8.
Zurück zum Zitat E.J. Pavlina, C.J. VanTyne, and J.G. Speer, Effects of Combined Silicon and Molybdenum Alloying on the Size and Evolution of Microalloy Precipitates in HSLA Steels Containing Niobium and Titanium, Mater. Charact., 2015, 102, p 35–46CrossRef E.J. Pavlina, C.J. VanTyne, and J.G. Speer, Effects of Combined Silicon and Molybdenum Alloying on the Size and Evolution of Microalloy Precipitates in HSLA Steels Containing Niobium and Titanium, Mater. Charact., 2015, 102, p 35–46CrossRef
9.
Zurück zum Zitat G. Mandal, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee, Correlation Between Structure and Properties of Low-Carbon Cu-Ni-Mo-Ti-Nb Ultrahigh-Strength Steel, J. Mater. Eng. Perform., 2018, 27, p 6516–6528CrossRef G. Mandal, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee, Correlation Between Structure and Properties of Low-Carbon Cu-Ni-Mo-Ti-Nb Ultrahigh-Strength Steel, J. Mater. Eng. Perform., 2018, 27, p 6516–6528CrossRef
10.
Zurück zum Zitat P. Marynowski, H. Adrian, and M. Głowacki, Modeling of the Kinetics of Carbonitride Precipitation Process in High-Strength Low-Alloy Steels Using Cellular Automata Method, J. Mater. Eng. Perform., 2019, 28, p 4018–4025CrossRef P. Marynowski, H. Adrian, and M. Głowacki, Modeling of the Kinetics of Carbonitride Precipitation Process in High-Strength Low-Alloy Steels Using Cellular Automata Method, J. Mater. Eng. Perform., 2019, 28, p 4018–4025CrossRef
11.
Zurück zum Zitat R.W.K. Honeycombe, 29th HATFIELD MEMORIAL LECTURE: ferrite, Met. Sci., 1980, 14, p 201–214CrossRef R.W.K. Honeycombe, 29th HATFIELD MEMORIAL LECTURE: ferrite, Met. Sci., 1980, 14, p 201–214CrossRef
12.
Zurück zum Zitat R.W.K. Honeycombe and R.F. Mehl, Transformation from Austenite in Alloy Steels, Metall. Mater. Trans. A, 1976, 7A, p 915–936CrossRef R.W.K. Honeycombe and R.F. Mehl, Transformation from Austenite in Alloy Steels, Metall. Mater. Trans. A, 1976, 7A, p 915–936CrossRef
13.
Zurück zum Zitat S. Freeman and R.W.K. Honeycombe, Strengthening of Titanium Steels by Carbide Precipitation, Met. Sci., 1977, 11, p 59–64CrossRef S. Freeman and R.W.K. Honeycombe, Strengthening of Titanium Steels by Carbide Precipitation, Met. Sci., 1977, 11, p 59–64CrossRef
14.
Zurück zum Zitat J.M. Gray and R.B.G. Yeo, Niobium Carbonitride Precipitation in Low-Alloy Steels with Particular Emphasis on Precipitate-Row Formation, Trans. ASM, 1968, 61, p 255–269 J.M. Gray and R.B.G. Yeo, Niobium Carbonitride Precipitation in Low-Alloy Steels with Particular Emphasis on Precipitate-Row Formation, Trans. ASM, 1968, 61, p 255–269
15.
Zurück zum Zitat J.A.D. Batte and R.W.K. Honeycombe, Strengthening of Ferrite by Vanadium Carbide Precipitation, Met. Sci., 1973, 7, p 160–168CrossRef J.A.D. Batte and R.W.K. Honeycombe, Strengthening of Ferrite by Vanadium Carbide Precipitation, Met. Sci., 1973, 7, p 160–168CrossRef
16.
Zurück zum Zitat R. Lagneborg and S. Zajac, Model for Interphase Precipitation of V-Microalloyed Structural Steels, Metall. Mater. Trans. A, 2000, 31A, p 1–12 R. Lagneborg and S. Zajac, Model for Interphase Precipitation of V-Microalloyed Structural Steels, Metall. Mater. Trans. A, 2000, 31A, p 1–12
17.
Zurück zum Zitat J.G. Speer, J.R. Michael, and S.S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metall. Mater. Trans. A, 1987, 18A, p 211–222CrossRef J.G. Speer, J.R. Michael, and S.S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metall. Mater. Trans. A, 1987, 18A, p 211–222CrossRef
18.
Zurück zum Zitat J.S. Park and Y.K. Lee, Nb(C, N) Precipitation Kinetics in the Bainite Region of a Low-Carbon Nb-Microalloyed Steel, Scr. Mater., 2007, 57, p 109–112CrossRef J.S. Park and Y.K. Lee, Nb(C, N) Precipitation Kinetics in the Bainite Region of a Low-Carbon Nb-Microalloyed Steel, Scr. Mater., 2007, 57, p 109–112CrossRef
19.
Zurück zum Zitat J. Kim, J.-G. Jung, D.-H. Kim, and Y.-K. Lee, The Kinetics of Nb(C, N) Precipitation during the Isothermal Austenite to Ferrite Transformation in a Low-Carbon Nb-Microalloyed Steel, Acta Mater., 2013, 61, p 7437–7443CrossRef J. Kim, J.-G. Jung, D.-H. Kim, and Y.-K. Lee, The Kinetics of Nb(C, N) Precipitation during the Isothermal Austenite to Ferrite Transformation in a Low-Carbon Nb-Microalloyed Steel, Acta Mater., 2013, 61, p 7437–7443CrossRef
20.
Zurück zum Zitat P. Maugis and M. Gouné, Kinetics of Vanadium Carbonitride Precipitation in Steel: A Computer Model, Acta Mater., 2005, 53, p 3359–3367CrossRef P. Maugis and M. Gouné, Kinetics of Vanadium Carbonitride Precipitation in Steel: A Computer Model, Acta Mater., 2005, 53, p 3359–3367CrossRef
21.
Zurück zum Zitat S.F. Medina, M. Gómez, and L. Rancel, Grain Refinement by Intragranular Nucleation of Ferrite in a High Nitrogen Content Vanadium Microalloyed Steel, Scr. Mater., 2008, 58, p 1110–1113CrossRef S.F. Medina, M. Gómez, and L. Rancel, Grain Refinement by Intragranular Nucleation of Ferrite in a High Nitrogen Content Vanadium Microalloyed Steel, Scr. Mater., 2008, 58, p 1110–1113CrossRef
22.
Zurück zum Zitat Y. Funakawa, T. Shiozaki, K. Tomita, Y. Yamamoto, and E. Maeda, Development of High Strength Hot-Rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int., 2004, 44, p 1945–1951CrossRef Y. Funakawa, T. Shiozaki, K. Tomita, Y. Yamamoto, and E. Maeda, Development of High Strength Hot-Rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int., 2004, 44, p 1945–1951CrossRef
23.
Zurück zum Zitat K. Seto, Y. Funakawa, and S. Kaneko, Hot Rolled High Strength Steels for Suspension and Chassis Parts ‘‘Nanohiten’’ and BHT Steel, JFE GIHO, 2007, 16, p 28–33 K. Seto, Y. Funakawa, and S. Kaneko, Hot Rolled High Strength Steels for Suspension and Chassis Parts ‘‘Nanohiten’’ and BHT Steel, JFE GIHO, 2007, 16, p 28–33
24.
Zurück zum Zitat C. Chih-Yuan, C. Chien-Chon, and Y. Jer-Ren, Dualism of Precipitation Morphology in High Strength Low Alloy Steel, Mater. Sci. Eng. A, 2015, 626, p 74–79CrossRef C. Chih-Yuan, C. Chien-Chon, and Y. Jer-Ren, Dualism of Precipitation Morphology in High Strength Low Alloy Steel, Mater. Sci. Eng. A, 2015, 626, p 74–79CrossRef
25.
Zurück zum Zitat J.H. Jang, C.-H. Lee, Y.-U. Heo, and D.-W. Suh, Stability of (Ti, M)C (M = Nb, V, Mo and W) Carbide in Steels Using First-Principles Calculations, Acta Mater., 2012, 60, p 208–217CrossRef J.H. Jang, C.-H. Lee, Y.-U. Heo, and D.-W. Suh, Stability of (Ti, M)C (M = Nb, V, Mo and W) Carbide in Steels Using First-Principles Calculations, Acta Mater., 2012, 60, p 208–217CrossRef
26.
Zurück zum Zitat J.H. Jang, Y.U. Heo, C.H. Lee, H. Bhadeshia, and D.W. Suh, Interphase Precipitation in Ti–Nb and Ti–Nb–Mo Bearing Steel, Mater. Sci. Tech., 2013, 29, p 309–313CrossRef J.H. Jang, Y.U. Heo, C.H. Lee, H. Bhadeshia, and D.W. Suh, Interphase Precipitation in Ti–Nb and Ti–Nb–Mo Bearing Steel, Mater. Sci. Tech., 2013, 29, p 309–313CrossRef
27.
Zurück zum Zitat K.M. Wu, Y. Inagawa, and M. Enomoto, Three-Dimensional Morphology of Ferrite Formed in Association with Inclusions in Low-Carbon Steel, Mater. Charact., 2004, 52, p 121–127CrossRef K.M. Wu, Y. Inagawa, and M. Enomoto, Three-Dimensional Morphology of Ferrite Formed in Association with Inclusions in Low-Carbon Steel, Mater. Charact., 2004, 52, p 121–127CrossRef
28.
Zurück zum Zitat ASTM Standard E 112-84, ASTM, Philadelphia, PA, 1984 ASTM Standard E 112-84, ASTM, Philadelphia, PA, 1984
29.
Zurück zum Zitat J. Wang, P.D. Hodgson, I. Bikmukhametov, M.K. Miller, and I. Timokhina, Effects of Hot-Deformation on Grain Boundary Precipitation and Segregation in Ti-Mo Microalloyed Steels, Mater. Des., 2018, 141, p 48–56CrossRef J. Wang, P.D. Hodgson, I. Bikmukhametov, M.K. Miller, and I. Timokhina, Effects of Hot-Deformation on Grain Boundary Precipitation and Segregation in Ti-Mo Microalloyed Steels, Mater. Des., 2018, 141, p 48–56CrossRef
30.
Zurück zum Zitat X.-L. Pan and M. Umemoto, Precipitation Characteristics and Mechanism of Vanadium Carbides in a V-Microalloyed Medium-Carbon Steel, Acta Metall. Sin., 2018, 31, p 1197–1206CrossRef X.-L. Pan and M. Umemoto, Precipitation Characteristics and Mechanism of Vanadium Carbides in a V-Microalloyed Medium-Carbon Steel, Acta Metall. Sin., 2018, 31, p 1197–1206CrossRef
31.
Zurück zum Zitat C.-Y. Chen, J.-R. Yang, C.-C. Chen, and S.-F. Chen, Microstructural Characterization and Strengthening Behavior of Nanometer Sized Carbides in Ti–Mo Microalloyed Steels during Continuous Cooling Process, Mater. Charact., 2016, 114, p 18–29CrossRef C.-Y. Chen, J.-R. Yang, C.-C. Chen, and S.-F. Chen, Microstructural Characterization and Strengthening Behavior of Nanometer Sized Carbides in Ti–Mo Microalloyed Steels during Continuous Cooling Process, Mater. Charact., 2016, 114, p 18–29CrossRef
32.
Zurück zum Zitat H. Bhadeshia, Diffusional Transformations: A Theory for the Formation of Superledges, Phys. Status Solidi A—Appl. Res., 1982, 39, p 745–750CrossRef H. Bhadeshia, Diffusional Transformations: A Theory for the Formation of Superledges, Phys. Status Solidi A—Appl. Res., 1982, 39, p 745–750CrossRef
33.
Zurück zum Zitat A. Rahnama, S. Clark, and S. Sridhar, Machine Learning for Predicting Occurrence of Interphase Precipitation in HSLA Steels, Comput. Mater. Sci., 2018, 154, p 169–177CrossRef A. Rahnama, S. Clark, and S. Sridhar, Machine Learning for Predicting Occurrence of Interphase Precipitation in HSLA Steels, Comput. Mater. Sci., 2018, 154, p 169–177CrossRef
34.
Zurück zum Zitat I. Bikmukhametov, H. Beladi, J. Wang, P.D. Hodgson, and I. Timokhina, The Effect of Strain on Interphase Precipitation Characteristics in a Ti-Mo Steel, Acta Mater., 2019, 170, p 75–86CrossRef I. Bikmukhametov, H. Beladi, J. Wang, P.D. Hodgson, and I. Timokhina, The Effect of Strain on Interphase Precipitation Characteristics in a Ti-Mo Steel, Acta Mater., 2019, 170, p 75–86CrossRef
35.
Zurück zum Zitat L. García-Sesma, B. López, and B. Pered, Effect of Coiling Conditions on the Strengthening Mechanisms of Nb Microalloyed Steels with High Ti Addition Levels, Mater. Sci. Eng. A, 2019, 748, p 386–395CrossRef L. García-Sesma, B. López, and B. Pered, Effect of Coiling Conditions on the Strengthening Mechanisms of Nb Microalloyed Steels with High Ti Addition Levels, Mater. Sci. Eng. A, 2019, 748, p 386–395CrossRef
36.
Zurück zum Zitat C.-Y. Chen, C.-C. Chen, and J.-R. Yang, Synergistic Effect of Austenitizing Temperature and Hot Plastic Deformation Strain on the Precipitation Behavior in Novel HSLA Steel, Mater. Sci. Eng. A, 2015, 639, p 145–154CrossRef C.-Y. Chen, C.-C. Chen, and J.-R. Yang, Synergistic Effect of Austenitizing Temperature and Hot Plastic Deformation Strain on the Precipitation Behavior in Novel HSLA Steel, Mater. Sci. Eng. A, 2015, 639, p 145–154CrossRef
37.
Zurück zum Zitat T. Gladman, The Physical Metallurgy of Microalloyed Steels, 3rd ed., CRC Press, Boca Raton, 1996 T. Gladman, The Physical Metallurgy of Microalloyed Steels, 3rd ed., CRC Press, Boca Raton, 1996
38.
Zurück zum Zitat J.-B. Seol, S.-H. Na, B. Gault, J.-E. Kim, J.-C. Han, C.-G. Park, and D. Raabe, Core–Shell Nanoparticle Arrays Double the Strength of Steel, Sci. Rep., 2017 7, Article number: 42547 J.-B. Seol, S.-H. Na, B. Gault, J.-E. Kim, J.-C. Han, C.-G. Park, and D. Raabe, Core–Shell Nanoparticle Arrays Double the Strength of Steel, Sci. Rep., 2017 7, Article number: 42547
39.
Zurück zum Zitat J. Wadsworth, J.H. Woodhead, and S.R. Keown, The Influence of Stoichiometry Upon Carbide Precipitation, Met. Sci., 1976, 10, p 342–348CrossRef J. Wadsworth, J.H. Woodhead, and S.R. Keown, The Influence of Stoichiometry Upon Carbide Precipitation, Met. Sci., 1976, 10, p 342–348CrossRef
40.
Zurück zum Zitat D.H. Milanez, L.I.L. Faria, D.R. Leiva, C.S. Kiminami, and W.J. Botta, Assessing Technological Developments in Amorphous/Glassy Metallic Alloys Using Patent Indicators, J. Alloys Compd., 2017, 716, p 330–335CrossRef D.H. Milanez, L.I.L. Faria, D.R. Leiva, C.S. Kiminami, and W.J. Botta, Assessing Technological Developments in Amorphous/Glassy Metallic Alloys Using Patent Indicators, J. Alloys Compd., 2017, 716, p 330–335CrossRef
41.
Zurück zum Zitat Y. Funakawa, T. Shiozaki, T. Yamamoto, E. Maeda, H. Nakada, K. Tomita, T. Saito, T. Yamashita, and H. Masumoto, High Formability High Tensile Hot Rolled Steel Sheet, Sheet Having Excellent Material Uniformity, Production Method Therefor and Working Method Therefor. JP patent, JP 2002322541, 2002 Y. Funakawa, T. Shiozaki, T. Yamamoto, E. Maeda, H. Nakada, K. Tomita, T. Saito, T. Yamashita, and H. Masumoto, High Formability High Tensile Hot Rolled Steel Sheet, Sheet Having Excellent Material Uniformity, Production Method Therefor and Working Method Therefor. JP patent, JP 2002322541, 2002
42.
Zurück zum Zitat N. Koichi, Y. Takeshi, N. Nobuyuki, S. Kazuhiro, K. Satoshi, and Y. Katsumi, High Strength Steel Sheet, US patent, US 2010196189 A1, 2010 N. Koichi, Y. Takeshi, N. Nobuyuki, S. Kazuhiro, K. Satoshi, and Y. Katsumi, High Strength Steel Sheet, US patent, US 2010196189 A1, 2010
43.
Zurück zum Zitat T. Shiozaki, Y. Funakawa, K. Tomita, T. Yamamoto, and E. Maeda, Ultrahigh Tensile Strength Steel Sheet Having Excellent Workability, Production Method Therefor, and Working Method Therefor, JP patent, JP 2003089848A, 2003 T. Shiozaki, Y. Funakawa, K. Tomita, T. Yamamoto, and E. Maeda, Ultrahigh Tensile Strength Steel Sheet Having Excellent Workability, Production Method Therefor, and Working Method Therefor, JP patent, JP 2003089848A, 2003
Metadaten
Titel
Exploring How (Ti + Mo)/C and Ti/Mo Influence the Precipitation Behaviors within Microalloyed Steels: Experimental Evidence and Related Patents Investigation
verfasst von
Chih-Yuan Chen
Lung-Jen Chiang
Chien-Chon Chen
Meng-Hsuan Liao
Jih-Sheng Kuo
Ya-Hsuan Chou
Publikationsdatum
31.01.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04608-0

Weitere Artikel der Ausgabe 3/2020

Journal of Materials Engineering and Performance 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.