Skip to main content
Erschienen in: Journal of Materials Science 12/2023

15.03.2023 | Computation & theory

Exploring supervised machine learning for multi-phase identification and quantification from powder X-ray diffraction spectra

verfasst von: Jaimie Greasley, Patrick Hosein

Erschienen in: Journal of Materials Science | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Powder X-ray diffraction analysis is a critical component of materials characterization methodologies. Discerning characteristic Bragg intensity peaks and assigning them to known crystalline phases is the first qualitative step of evaluating diffraction spectra. Subsequent to phase identification, Rietveld refinement may be employed to extract the abundance of quantitative, material-specific parameters hidden within powder data. These characterization procedures are yet time-consuming and inhibit efficiency in materials science workflows. The ever-increasing popularity and propulsion of data science techniques has provided an obvious solution on the course toward materials analysis automation. Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra. However, the infeasibility of curating large, well-labeled experimental datasets means that one must resort to a large number of theoretic simulations for powder data augmentation to effectively train deep models. Herein, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification and quantitative phase analysis for a biomedical application. First, models were trained using very limited experimental data. Further, we incorporated simulated XRD data to assess model generalizability as well as the efficacy of simulation-based training for predictive analysis in a real-world X-ray diffraction application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dinnebier RE, Billinge SJ (2008) Powder diffraction: theory and practice. R Soc Chem 25:87 Dinnebier RE, Billinge SJ (2008) Powder diffraction: theory and practice. R Soc Chem 25:87
2.
Zurück zum Zitat Pecharsky V, Zavalij P (2009) Fundamentals of powder diffraction and structure characterization of materials Pecharsky V, Zavalij P (2009) Fundamentals of powder diffraction and structure characterization of materials
3.
Zurück zum Zitat Gates-Rector S, Blanton T (2019) The powder diffraction file: a quality materials characterization database. Powder Diffr 34(4):352–360CrossRef Gates-Rector S, Blanton T (2019) The powder diffraction file: a quality materials characterization database. Powder Diffr 34(4):352–360CrossRef
4.
Zurück zum Zitat Lutterotti L, Pilliere H, Fontugne C, Boullay P, Chateigner D (2019) Full-profile search-match by the rietveld method. J Appli Crystallogr 52(3):587–598CrossRef Lutterotti L, Pilliere H, Fontugne C, Boullay P, Chateigner D (2019) Full-profile search-match by the rietveld method. J Appli Crystallogr 52(3):587–598CrossRef
5.
Zurück zum Zitat Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRef Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRef
6.
Zurück zum Zitat McCusker L, Von Dreele R, Cox D, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32(1):36–50CrossRef McCusker L, Von Dreele R, Cox D, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32(1):36–50CrossRef
7.
Zurück zum Zitat Oviedo F, Ren Z, Sun S, Settens C, Liu Z, Hartono NTP, Ramasamy S, DeCost BL, Tian SI, Romano G et al (2019) Fast and interpretable classification of small x-ray diffraction datasets using data augmentation and deep neural networks. Comput Mater 5(1):1–9 Oviedo F, Ren Z, Sun S, Settens C, Liu Z, Hartono NTP, Ramasamy S, DeCost BL, Tian SI, Romano G et al (2019) Fast and interpretable classification of small x-ray diffraction datasets using data augmentation and deep neural networks. Comput Mater 5(1):1–9
8.
Zurück zum Zitat Mao SS, Burrows PE (2015) Combinatorial screening of thin film materials: An overview. J Materiomics 1(2):85–91CrossRef Mao SS, Burrows PE (2015) Combinatorial screening of thin film materials: An overview. J Materiomics 1(2):85–91CrossRef
9.
Zurück zum Zitat Sun S, Hartono NT, Ren ZD, Oviedo F, Buscemi AM, Layurova M, Chen DX, Ogunfunmi T, Thapa J, Ramasamy S et al (2019) Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3(6):1437–1451CrossRef Sun S, Hartono NT, Ren ZD, Oviedo F, Buscemi AM, Layurova M, Chen DX, Ogunfunmi T, Thapa J, Ramasamy S et al (2019) Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3(6):1437–1451CrossRef
10.
Zurück zum Zitat de Pablo JJ, Jackson NE, Webb MA, Chen L-Q, Moore JE, Morgan D, Jacobs R, Pollock T, Schlom DG, Toberer ES et al (2019) New frontiers for the materials genome initiative. Comput Mater 5(1):1–23 de Pablo JJ, Jackson NE, Webb MA, Chen L-Q, Moore JE, Morgan D, Jacobs R, Pollock T, Schlom DG, Toberer ES et al (2019) New frontiers for the materials genome initiative. Comput Mater 5(1):1–23
11.
Zurück zum Zitat Agrawal A, Choudhary A (2019) Deep materials informatics: applications of deep learning in materials science. Mrs Commun 9(3):779–792CrossRef Agrawal A, Choudhary A (2019) Deep materials informatics: applications of deep learning in materials science. Mrs Commun 9(3):779–792CrossRef
12.
Zurück zum Zitat Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJ et al (2022) Recent advances and applications of deep learning methods in materials science. Comput Mater 8(1):1–26 Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJ et al (2022) Recent advances and applications of deep learning methods in materials science. Comput Mater 8(1):1–26
13.
Zurück zum Zitat Park WB, Chung J, Jung J, Sohn K, Singh SP, Pyo M, Shin N, Sohn K-S (2017) Classification of crystal structure using a convolutional neural network. IUCrJ 4(4):486–494CrossRef Park WB, Chung J, Jung J, Sohn K, Singh SP, Pyo M, Shin N, Sohn K-S (2017) Classification of crystal structure using a convolutional neural network. IUCrJ 4(4):486–494CrossRef
14.
Zurück zum Zitat Vecsei PM, Choo K, Chang J, Neupert T (2019) Neural network based classification of crystal symmetries from x-ray diffraction patterns. Phys Rev B 99(24):245120CrossRef Vecsei PM, Choo K, Chang J, Neupert T (2019) Neural network based classification of crystal symmetries from x-ray diffraction patterns. Phys Rev B 99(24):245120CrossRef
15.
Zurück zum Zitat Aguiar JA, Gong ML, Tasdizen T (2020) Crystallographic prediction from diffraction and chemistry data for higher throughput classification using machine learning. Computational Materials Science 173:109409CrossRef Aguiar JA, Gong ML, Tasdizen T (2020) Crystallographic prediction from diffraction and chemistry data for higher throughput classification using machine learning. Computational Materials Science 173:109409CrossRef
16.
Zurück zum Zitat Zaloga AN, Stanovov VV, Bezrukova OE, Dubinin PS, Yakimov IS (2020) Crystal symmetry classification from powder x-ray diffraction patterns using a convolutional neural network. Mater Today Commun 25:101662CrossRef Zaloga AN, Stanovov VV, Bezrukova OE, Dubinin PS, Yakimov IS (2020) Crystal symmetry classification from powder x-ray diffraction patterns using a convolutional neural network. Mater Today Commun 25:101662CrossRef
17.
Zurück zum Zitat Lee J-W, Park WB, Lee JH, Singh SP, Sohn K-S (2020) A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic xrd powder patterns. Nat Commun 11(1):1–11 Lee J-W, Park WB, Lee JH, Singh SP, Sohn K-S (2020) A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic xrd powder patterns. Nat Commun 11(1):1–11
18.
Zurück zum Zitat Wang H, Xie Y, Li D, Deng H, Zhao Y, Xin M, Lin J (2020) Rapid identification of x-ray diffraction patterns based on very limited data by interpretable convolutional neural networks. J Chem Inf Model 60(4):2004–2011CrossRef Wang H, Xie Y, Li D, Deng H, Zhao Y, Xin M, Lin J (2020) Rapid identification of x-ray diffraction patterns based on very limited data by interpretable convolutional neural networks. J Chem Inf Model 60(4):2004–2011CrossRef
19.
Zurück zum Zitat Lee J-W, Park WB, Kim M, Singh SP, Pyo M, Sohn K-S (2021) A data-driven xrd analysis protocol for phase identification and phase-fraction prediction of multiphase inorganic compounds. Inorganic Chem Front 8(10):2492–2504CrossRef Lee J-W, Park WB, Kim M, Singh SP, Pyo M, Sohn K-S (2021) A data-driven xrd analysis protocol for phase identification and phase-fraction prediction of multiphase inorganic compounds. Inorganic Chem Front 8(10):2492–2504CrossRef
20.
Zurück zum Zitat Maffettone PM, Banko L, Cui P, Lysogorskiy Y, Little MA, Olds D, Ludwig A, Cooper AI (2021) Crystallography companion agent for high-throughput materials discovery. Nat Comput Sci 1(4):290–297CrossRef Maffettone PM, Banko L, Cui P, Lysogorskiy Y, Little MA, Olds D, Ludwig A, Cooper AI (2021) Crystallography companion agent for high-throughput materials discovery. Nat Comput Sci 1(4):290–297CrossRef
21.
Zurück zum Zitat Szymanski NJ, Bartel CJ, Zeng Y, Tu Q, Ceder G (2021) Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra. Chem Mater 33(11):4204–4215CrossRef Szymanski NJ, Bartel CJ, Zeng Y, Tu Q, Ceder G (2021) Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra. Chem Mater 33(11):4204–4215CrossRef
22.
Zurück zum Zitat Chitturi SR, Ratner D, Walroth RC, Thampy V, Reed EJ, Dunne M, Tassone CJ, Stone KH (2021) Automated prediction of lattice parameters from x-ray powder diffraction patterns. J Appl Crystallogr 54:6CrossRef Chitturi SR, Ratner D, Walroth RC, Thampy V, Reed EJ, Dunne M, Tassone CJ, Stone KH (2021) Automated prediction of lattice parameters from x-ray powder diffraction patterns. J Appl Crystallogr 54:6CrossRef
23.
Zurück zum Zitat Dong H, Butler KT, Matras D, Price SW, Odarchenko Y, Khatry R, Thompson A, Middelkoop V, Jacques SD, Beale AM et al (2021) A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. Comput Mater 7(1):1–9 Dong H, Butler KT, Matras D, Price SW, Odarchenko Y, Khatry R, Thompson A, Middelkoop V, Jacques SD, Beale AM et al (2021) A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. Comput Mater 7(1):1–9
24.
Zurück zum Zitat Bunn JK, Han S, Zhang Y, Tong Y, Hu J, Hattrick-Simpers JR (2015) Generalized machine learning technique for automatic phase attribution in time variant high-throughput experimental studies. J Mater Res 30(7):879–889CrossRef Bunn JK, Han S, Zhang Y, Tong Y, Hu J, Hattrick-Simpers JR (2015) Generalized machine learning technique for automatic phase attribution in time variant high-throughput experimental studies. J Mater Res 30(7):879–889CrossRef
25.
Zurück zum Zitat Park SY, Son B-K, Choi J, Jin H, Lee K (2022) Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, ulleung basin, korea. J Petroleum Sci Eng 209:109840CrossRef Park SY, Son B-K, Choi J, Jin H, Lee K (2022) Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, ulleung basin, korea. J Petroleum Sci Eng 209:109840CrossRef
26.
Zurück zum Zitat Qian X, Wan J, Xu J, Liu C, Zhong M, Zhang J, Zhang Y, Wang S (2022) Epidemiological trends of urolithiasis at the global, regional, and national levels: a population-based study. Int J Clin Pract 2022:54CrossRef Qian X, Wan J, Xu J, Liu C, Zhong M, Zhang J, Zhang Y, Wang S (2022) Epidemiological trends of urolithiasis at the global, regional, and national levels: a population-based study. Int J Clin Pract 2022:54CrossRef
27.
Zurück zum Zitat Mirković M, Dosen A, Erić S, Vulić P, Matović B, Rosić A (2020) Phase and microstructural study of urinary stones. Microchem J 152:104429CrossRef Mirković M, Dosen A, Erić S, Vulić P, Matović B, Rosić A (2020) Phase and microstructural study of urinary stones. Microchem J 152:104429CrossRef
28.
Zurück zum Zitat Daudon M, Dessombz A, Frochot V, Letavernier E, Haymann J-P, Jungers P, Bazin D (2016) Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie 19(11–12):1470–1491CrossRef Daudon M, Dessombz A, Frochot V, Letavernier E, Haymann J-P, Jungers P, Bazin D (2016) Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie 19(11–12):1470–1491CrossRef
29.
Zurück zum Zitat Pearle MS, Goldfarb DS, Assimos DG, Curhan G, Denu-Ciocca CJ, Matlaga BR, Monga M, Penniston KL, Preminger GM, Turk TM et al (2014) Medical management of kidney stones: Aua guideline. J Urol 192(2):316–324CrossRef Pearle MS, Goldfarb DS, Assimos DG, Curhan G, Denu-Ciocca CJ, Matlaga BR, Monga M, Penniston KL, Preminger GM, Turk TM et al (2014) Medical management of kidney stones: Aua guideline. J Urol 192(2):316–324CrossRef
30.
Zurück zum Zitat Turk C, Neisius A, Petřík A, Seitz C, Thomas K, Skolarikos A, (2020) European Association of Urology Guidelines. 2020 Edition., vol. presented at the EAU Annual Congress Amsterdam 2020, european association of urology guidelines. 2020 edition. EAU Guidelines on Urolithiasis 2020. The European Association of Urology Guidelines Office, Turk C, Neisius A, Petřík A, Seitz C, Thomas K, Skolarikos A, (2020) European Association of Urology Guidelines. 2020 Edition., vol. presented at the EAU Annual Congress Amsterdam 2020, european association of urology guidelines. 2020 edition. EAU Guidelines on Urolithiasis 2020. The European Association of Urology Guidelines Office,
31.
Zurück zum Zitat Greasley J, Goolcharan S, Andrews R (2022) Quantitative phase analysis and microstructural characterization of urinary tract calculi with x-ray diffraction rietveld analysis on a caribbean island. J Appl Crystallogr 55:1CrossRef Greasley J, Goolcharan S, Andrews R (2022) Quantitative phase analysis and microstructural characterization of urinary tract calculi with x-ray diffraction rietveld analysis on a caribbean island. J Appl Crystallogr 55:1CrossRef
32.
33.
Zurück zum Zitat Daudon M, Jungers P, Bazin D, Williams JC (2018) Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46(5):459–470CrossRef Daudon M, Jungers P, Bazin D, Williams JC (2018) Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46(5):459–470CrossRef
34.
Zurück zum Zitat Lutterotti L, Matthies S, Wenk H (1999) Maud: a friendly java program for material analysis using diffraction, IUCr: Newsletter of the CPD, 21(14-15), Lutterotti L, Matthies S, Wenk H (1999) Maud: a friendly java program for material analysis using diffraction, IUCr: Newsletter of the CPD, 21(14-15),
35.
Zurück zum Zitat Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRef Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319CrossRef
36.
Zurück zum Zitat Gražulis S, Chateigner D, Downs RT, Yokochi A, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database-an open-access collection of crystal structures. J Appl Crystallogr 42(4):726–729CrossRef Gražulis S, Chateigner D, Downs RT, Yokochi A, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database-an open-access collection of crystal structures. J Appl Crystallogr 42(4):726–729CrossRef
37.
Zurück zum Zitat Toby BH, Von Dreele RB (2013) Gsas-ii: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549CrossRef Toby BH, Von Dreele RB (2013) Gsas-ii: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549CrossRef
38.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
39.
Zurück zum Zitat Suzuki Y, Hino H, Hawai T, Saito K, Kotsugi M, Ono K (2020) Symmetry prediction and knowledge discovery from x-ray diffraction patterns using an interpretable machine learning approach. Sci Rep 10(1):1–11CrossRef Suzuki Y, Hino H, Hawai T, Saito K, Kotsugi M, Ono K (2020) Symmetry prediction and knowledge discovery from x-ray diffraction patterns using an interpretable machine learning approach. Sci Rep 10(1):1–11CrossRef
40.
Zurück zum Zitat Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Computer Syst Sci 55(1):119–139CrossRef Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Computer Syst Sci 55(1):119–139CrossRef
Metadaten
Titel
Exploring supervised machine learning for multi-phase identification and quantification from powder X-ray diffraction spectra
verfasst von
Jaimie Greasley
Patrick Hosein
Publikationsdatum
15.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08343-4

Weitere Artikel der Ausgabe 12/2023

Journal of Materials Science 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.