Skip to main content
Erschienen in: Journal of Materials Science 12/2023

10.03.2023 | Chemical routes to materials

Unveiling the role of trace metal doping in transition metal oxides for boosting oxygen evolution reaction

verfasst von: Yifan Yang, Lixiong Xu, Wei Wang, Rong Han, Jun Ma, Mengqin Yao, Shuo Geng, Fei Liu

Erschienen in: Journal of Materials Science | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Introducing oxygen vacancies in electrocatalysts through heteroatom doping has been deemed to be a promising strategy to modulate the electronic structure of electrocatalysts for improving electrocatalytic activity. However, there is a bewilderment for understanding the relationship between the oxygen vacancies and electrocatalytic activity of electrocatalysts because heteroatom doping can also modulate the electronic structure of electrocatalysts by heteroatom. In this work, trace metal-doped Co3O4 was synthesized to understand the relationship between the oxygen vacancies and OER activity of electrocatalysts without considering the influence of heteroatom. Trace metal doping has no influence on electronic structure but increases the content of oxygen vacancies of Co3O4. Among these trace metal-doped Co3O4, Zn-doped Co3O4 shows the superior OER performance owing to the most oxygen vacancies. Compared to the pristine Co3O4 nanorods, the overpotential of Zn-doped Co3O4 for the current density of 10 mA cm−2 was decreased 70 mV, indicating that only oxygen vacancies formation can enhance the OER activity of Co3O4. This work is helpful to understanding the relationship between catalytic activity and oxygen vacancies.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat An L, Wei C, Lu M, Liu H, Chen Y, Scherer GS, Fisher AC, Xi P, Xu ZJ, Yan CH (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33:2006328CrossRef An L, Wei C, Lu M, Liu H, Chen Y, Scherer GS, Fisher AC, Xi P, Xu ZJ, Yan CH (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33:2006328CrossRef
2.
Zurück zum Zitat Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157CrossRef Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157CrossRef
3.
Zurück zum Zitat Lee Y, Suntivith J, May KJ, Perry EE, Horn YS (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404CrossRef Lee Y, Suntivith J, May KJ, Perry EE, Horn YS (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404CrossRef
4.
Zurück zum Zitat Tsuji E, Imanishi A, Fukui K, Nakato Y (2011) Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in aqueous solution. Electrochim Acta 56:2009–2016CrossRef Tsuji E, Imanishi A, Fukui K, Nakato Y (2011) Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in aqueous solution. Electrochim Acta 56:2009–2016CrossRef
5.
Zurück zum Zitat Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:1011–1014CrossRef Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:1011–1014CrossRef
6.
Zurück zum Zitat Vos JG, Wezendonk TA, Jeremiasse AW, Koper MTM (2018) MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J Am Chem Soc 140:10270–10281CrossRef Vos JG, Wezendonk TA, Jeremiasse AW, Koper MTM (2018) MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J Am Chem Soc 140:10270–10281CrossRef
7.
Zurück zum Zitat Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23–39CrossRef Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23–39CrossRef
8.
Zurück zum Zitat Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting-a review. J Power Source 400:31–68CrossRef Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting-a review. J Power Source 400:31–68CrossRef
9.
Zurück zum Zitat Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27:7549–7558CrossRef Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27:7549–7558CrossRef
10.
Zurück zum Zitat Wang G, Yang Y, Han D, Li Y (2017) Oxygen defective metal oxides for energy conversion and storage. Nano Today 13:23–39CrossRef Wang G, Yang Y, Han D, Li Y (2017) Oxygen defective metal oxides for energy conversion and storage. Nano Today 13:23–39CrossRef
11.
Zurück zum Zitat Wang L, Xie X, Dinh KN, Yan Q, Ma J (2019) Synthesis, characterization, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev 397:138–167CrossRef Wang L, Xie X, Dinh KN, Yan Q, Ma J (2019) Synthesis, characterization, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev 397:138–167CrossRef
12.
Zurück zum Zitat Zu D, Wang H, Lin S, Ou G, Wei H, Sun S, Wu H (2019) Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment. Nano Res 12:2150–2163CrossRef Zu D, Wang H, Lin S, Ou G, Wei H, Sun S, Wu H (2019) Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment. Nano Res 12:2150–2163CrossRef
13.
Zurück zum Zitat Li Y, Li FM, Meng XY, Li SN, Zeng JH, Chen Y (2018) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal 8:1913–1920CrossRef Li Y, Li FM, Meng XY, Li SN, Zeng JH, Chen Y (2018) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal 8:1913–1920CrossRef
14.
Zurück zum Zitat Dou Y, Liao T, Ma Z, Tian D, Liu Q, Xiao F, Sun Z, Kim JH, Dou SX (2016) Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy 30:267–275CrossRef Dou Y, Liao T, Ma Z, Tian D, Liu Q, Xiao F, Sun Z, Kim JH, Dou SX (2016) Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy 30:267–275CrossRef
15.
Zurück zum Zitat Liu X, Xi W, Li C, Li X, Shi J, Shen Y, He J, Zhang L, Xie L, Sun X, Wang P, Luo J, Liu LM, Ding Y (2018) Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 44:371–377CrossRef Liu X, Xi W, Li C, Li X, Shi J, Shen Y, He J, Zhang L, Xie L, Sun X, Wang P, Luo J, Liu LM, Ding Y (2018) Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 44:371–377CrossRef
16.
Zurück zum Zitat Shi F, Huang K, Wang Y, Zhang W, Li L, Wang X, Feng S (2019) Black phosphorus-modified Co3O4 through tuning the electronic structure for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces 11:17459–17466CrossRef Shi F, Huang K, Wang Y, Zhang W, Li L, Wang X, Feng S (2019) Black phosphorus-modified Co3O4 through tuning the electronic structure for enhanced oxygen evolution reaction. ACS Appl Mater Interfaces 11:17459–17466CrossRef
17.
Zurück zum Zitat Badreldin A, Abusrafa AE, Abdel-Wahab A (2021) Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. Chemsuschem 14:10–32CrossRef Badreldin A, Abusrafa AE, Abdel-Wahab A (2021) Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. Chemsuschem 14:10–32CrossRef
18.
Zurück zum Zitat Yang MQ, Wang J, Wu H, Ho GW (2018) Nobel metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323CrossRef Yang MQ, Wang J, Wu H, Ho GW (2018) Nobel metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323CrossRef
19.
Zurück zum Zitat Wu R, Zhang J, Shi Y, Liu D, Zhang B (2015) Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc 137:6983–6986CrossRef Wu R, Zhang J, Shi Y, Liu D, Zhang B (2015) Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc 137:6983–6986CrossRef
20.
Zurück zum Zitat Zou X, Zhang Y (2015) Nobel metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef Zou X, Zhang Y (2015) Nobel metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef
21.
Zurück zum Zitat Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021CrossRef Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021CrossRef
22.
Zurück zum Zitat Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793CrossRef Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793CrossRef
23.
Zurück zum Zitat Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai WB, Yang Z, Zheng G (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1400696CrossRef Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai WB, Yang Z, Zheng G (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1400696CrossRef
24.
Zurück zum Zitat Du J, Li C, Tang Q (2020) Oxygen vacancies enriched Co3O4 nanoflowers with single layer porous structures for water splitting. Electrochim Acta 331:135456CrossRef Du J, Li C, Tang Q (2020) Oxygen vacancies enriched Co3O4 nanoflowers with single layer porous structures for water splitting. Electrochim Acta 331:135456CrossRef
25.
Zurück zum Zitat Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed 55:5277–5281CrossRef Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed 55:5277–5281CrossRef
26.
Zurück zum Zitat Wang J, Liu J, Zhang B, Cheng F, Ruan Y, Ji X, Xu K, Chen C, Miao L, Jiang J (2018) Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence state doping. Nano Energy 53:144–151CrossRef Wang J, Liu J, Zhang B, Cheng F, Ruan Y, Ji X, Xu K, Chen C, Miao L, Jiang J (2018) Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence state doping. Nano Energy 53:144–151CrossRef
27.
Zurück zum Zitat Liu S, Cheng H, Xu K, Ding H, Zhou J, Liu B, Chu W, Wu C, Xie Y (2019) Dual modulation via electrochemical reduction activation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett 4:423–429CrossRef Liu S, Cheng H, Xu K, Ding H, Zhou J, Liu B, Chu W, Wu C, Xie Y (2019) Dual modulation via electrochemical reduction activation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett 4:423–429CrossRef
28.
Zurück zum Zitat Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov KS, Ma C, Deng D, Bao X (2017) Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat Commun 8:14430CrossRef Deng J, Li H, Wang S, Ding D, Chen M, Liu C, Tian Z, Novoselov KS, Ma C, Deng D, Bao X (2017) Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat Commun 8:14430CrossRef
29.
Zurück zum Zitat Yin J, Jin J, Lu M, Huang B, Zhang H, Peng Y, Xi P, Yan CH (2020) Iridium single atoms coupling oxygen vacancies boosts oxygen evolution reaction in acid media. J Am Chem Soc 142:18378–18386CrossRef Yin J, Jin J, Lu M, Huang B, Zhang H, Peng Y, Xi P, Yan CH (2020) Iridium single atoms coupling oxygen vacancies boosts oxygen evolution reaction in acid media. J Am Chem Soc 142:18378–18386CrossRef
30.
Zurück zum Zitat Jiang S, Zhang R, Liu H, Cao Y, Yu Y, Chen S, Yue Q, Zhang Y, Kang Y (2020) Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J Am Chem Soc 142:6461–6466CrossRef Jiang S, Zhang R, Liu H, Cao Y, Yu Y, Chen S, Yue Q, Zhang Y, Kang Y (2020) Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J Am Chem Soc 142:6461–6466CrossRef
31.
Zurück zum Zitat Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S (2017) Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci 10:2563–2569CrossRef Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S (2017) Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci 10:2563–2569CrossRef
32.
Zurück zum Zitat Zhu K, Shi F, Zhu X, Yang W (2020) The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73:104761CrossRef Zhu K, Shi F, Zhu X, Yang W (2020) The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 73:104761CrossRef
33.
Zurück zum Zitat Zhong R, Wang Q, Du L, Pu Y, Ye S, Gu M, Zhang ZC, Huang L (2022) Ultrathin polycrystalline Co3O4 nanosheets with enriched oxygen vacancies for efficient electrochemical oxygen evolution and 5-hydroxymethylfurfural oxidation. Appl Surf Sci 584:152553CrossRef Zhong R, Wang Q, Du L, Pu Y, Ye S, Gu M, Zhang ZC, Huang L (2022) Ultrathin polycrystalline Co3O4 nanosheets with enriched oxygen vacancies for efficient electrochemical oxygen evolution and 5-hydroxymethylfurfural oxidation. Appl Surf Sci 584:152553CrossRef
34.
Zurück zum Zitat Xiao Z, Huang Y, Dong C, Xie C, Liu Z, Du S, Chen W, Yan D, Tao L, Shu Z, Zhang G, Duan H, Wang Y, Zou Y, Chen R, Wang S (2020) Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc 142:12087–12095CrossRef Xiao Z, Huang Y, Dong C, Xie C, Liu Z, Du S, Chen W, Yan D, Tao L, Shu Z, Zhang G, Duan H, Wang Y, Zou Y, Chen R, Wang S (2020) Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J Am Chem Soc 142:12087–12095CrossRef
35.
Zurück zum Zitat Zhang SL, Guan BY, Lu XF, Xi S, Du Y, Lou XW (2020) Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv Mater 32:2002235CrossRef Zhang SL, Guan BY, Lu XF, Xi S, Du Y, Lou XW (2020) Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv Mater 32:2002235CrossRef
36.
Zurück zum Zitat Huang ZF, Song J, Du Y, Xi S, Dou S, Nsanzimana JMV, Wang C, Xu ZJ, Wang X (2019) Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy 4:329–338CrossRef Huang ZF, Song J, Du Y, Xi S, Dou S, Nsanzimana JMV, Wang C, Xu ZJ, Wang X (2019) Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy 4:329–338CrossRef
37.
Zurück zum Zitat Yu C, Lu J, Luo L, Xu F, Shen PK, Tsiakaras P, Yin S (2019) Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim Acta 301:449–457CrossRef Yu C, Lu J, Luo L, Xu F, Shen PK, Tsiakaras P, Yin S (2019) Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim Acta 301:449–457CrossRef
38.
Zurück zum Zitat Lam K, Gao Y, Wang J, Ciucci F (2017) H2O2 treated La0.8Sr0.2CoO3-δ as an efficient catalyst for oxygen evolution reaction. Electrochim Acta 244:139–145CrossRef Lam K, Gao Y, Wang J, Ciucci F (2017) H2O2 treated La0.8Sr0.2CoO3-δ as an efficient catalyst for oxygen evolution reaction. Electrochim Acta 244:139–145CrossRef
Metadaten
Titel
Unveiling the role of trace metal doping in transition metal oxides for boosting oxygen evolution reaction
verfasst von
Yifan Yang
Lixiong Xu
Wei Wang
Rong Han
Jun Ma
Mengqin Yao
Shuo Geng
Fei Liu
Publikationsdatum
10.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2023
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-08345-2

Weitere Artikel der Ausgabe 12/2023

Journal of Materials Science 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.