Skip to main content
Erschienen in: Designs, Codes and Cryptography 2/2014

01.11.2014

Exponents of polar codes using algebraic geometric code kernels

verfasst von: Sarah E. Anderson, Gretchen L. Matthews

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reed–Solomon and BCH codes were considered as kernels of polar codes by Mori and Tanaka (IEEE Information Theory Workshop, 2010, pp 1–5) and Korada et al. (IEEE Trans Inform Theory 56(12):6253–6264, 2010) to create polar codes with large exponents. Mori and Tanaka showed that Reed–Solomon codes over the finite field \(\mathbb {F}_q\) with \(q\) elements give the best possible exponent among all codes of length \(l \le q\). They also stated that a Hermitian code over \(\mathbb {F}_{2^r}\) with \(r \ge 4\), a simple algebraic geometric code, gives a larger exponent than the Reed–Solomon matrix over the same field. In this paper, we expand on these ideas by employing more general algebraic geometric (AG) codes to produce kernels of polar codes. Lower bounds on the exponents are given for kernels from general AG codes, Hermitian codes, and Suzuki codes. We demonstrate that both Hermitian and Suzuki kernels have larger exponents than Reed–Solomon codes over the same field, for \(q \ge 3\); however, the larger exponents are at the expense of larger kernel matrices. Comparing kernels of the same size, though over different fields, we see that Reed–Solomon kernels have larger exponents than both Hermitian and Suzuki kernels. These results indicate a tradeoff between the exponent, kernel matrix size, and field size.
Literatur
1.
Zurück zum Zitat Arikan E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009). Arikan E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009).
2.
Zurück zum Zitat Chen C., Duursma I.: Geometric Reed–Solomon codes of length 64 and 65 over \(\mathbb{F}_8\). IEEE Trans. Inf. Theory 49(5), 1351–1353 (2003). Chen C., Duursma I.: Geometric Reed–Solomon codes of length 64 and 65 over \(\mathbb{F}_8\). IEEE Trans. Inf. Theory 49(5), 1351–1353 (2003).
3.
Zurück zum Zitat Korada S., Şaşoğlu E., Urbanke R.: Polar codes: characterization of exponent, bounds, and constructions. IEEE Trans. Inf. Theory 56(12), 6253–6264 (2010). Korada S., Şaşoğlu E., Urbanke R.: Polar codes: characterization of exponent, bounds, and constructions. IEEE Trans. Inf. Theory 56(12), 6253–6264 (2010).
4.
Zurück zum Zitat Marcolla C., Pellegrini M., Sala M.: On the small weights codewords of some Hermitian codes (preprint). Marcolla C., Pellegrini M., Sala M.: On the small weights codewords of some Hermitian codes (preprint).
5.
Zurück zum Zitat Mori R., Tanaka T.: Channel polarization on \(q\)-ary discrete memoryless channels by arbitrary kernels. In: IEEE ISIT, Austin, 13–18 June 2010, pp. 894–898. Mori R., Tanaka T.: Channel polarization on \(q\)-ary discrete memoryless channels by arbitrary kernels. In: IEEE ISIT, Austin, 13–18 June 2010, pp. 894–898.
6.
Zurück zum Zitat Mori R., Tanaka T.: Non-binary Polar codes using Reed–Solomon codes and algebraic geometry codes. In: IEEE Inform. Theory Workshop, Dublin, Ireland, 30 Aug–3 Sept 2010, pp. 1–5. Mori R., Tanaka T.: Non-binary Polar codes using Reed–Solomon codes and algebraic geometry codes. In: IEEE Inform. Theory Workshop, Dublin, Ireland, 30 Aug–3 Sept 2010, pp. 1–5.
7.
Zurück zum Zitat Mori R., Tanaka T.: Source and channel polarization over finite fields and Reed–Solomon matrices. IEEE Trans. Inf. Theory 60(5), 2720–2736 (2014). Mori R., Tanaka T.: Source and channel polarization over finite fields and Reed–Solomon matrices. IEEE Trans. Inf. Theory 60(5), 2720–2736 (2014).
8.
Zurück zum Zitat Park W., Barg A.: Polar codes for \(q\)-ary channels, \(q = 2^r\). IEEE Trans. Inf. Theory 59(2), 955–969 (2013). Park W., Barg A.: Polar codes for \(q\)-ary channels, \(q = 2^r\). IEEE Trans. Inf. Theory 59(2), 955–969 (2013).
9.
Zurück zum Zitat Şaşoğlu E.: Polar coding theorems for discrete systems. Ph.D. Dissertation, Ecole Polytechnique Federale de Lausanne (2011). Şaşoğlu E.: Polar coding theorems for discrete systems. Ph.D. Dissertation, Ecole Polytechnique Federale de Lausanne (2011).
10.
Zurück zum Zitat Şaşoğlu E., Telatar E., Arkan E.: Polarization for arbitrary discrete memoryless channels. In: Proc. IEEE Information Theory Workshop, Taormina, Italy, October 2009, pp. 144–148. Şaşoğlu E., Telatar E., Arkan E.: Polarization for arbitrary discrete memoryless channels. In: Proc. IEEE Information Theory Workshop, Taormina, Italy, October 2009, pp. 144–148.
11.
Zurück zum Zitat Stichtenoth H.: Algebraic Function Fields and Codes. Springer, Berlin (1993). Stichtenoth H.: Algebraic Function Fields and Codes. Springer, Berlin (1993).
12.
Zurück zum Zitat Yang K., Kumar P.: On the true minimum distance of Hermitian codes. In: Coding Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol. 1518, pp. 99–107. Springer, Berlin (1992). Yang K., Kumar P.: On the true minimum distance of Hermitian codes. In: Coding Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol. 1518, pp. 99–107. Springer, Berlin (1992).
Metadaten
Titel
Exponents of polar codes using algebraic geometric code kernels
verfasst von
Sarah E. Anderson
Gretchen L. Matthews
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2/2014
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-014-9987-8

Weitere Artikel der Ausgabe 2/2014

Designs, Codes and Cryptography 2/2014 Zur Ausgabe

Premium Partner