Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.05.2020 | Ausgabe 4/2020

Cognitive Computation 4/2020

Extracting Time Expressions and Named Entities with Constituent-Based Tagging Schemes

Zeitschrift:
Cognitive Computation > Ausgabe 4/2020
Autoren:
Xiaoshi Zhong, Erik Cambria, Amir Hussain
Wichtige Hinweise
This paper is an extension of the following conference paper: Xiaoshi Zhong and Erik Cambria. 2018. Time Expression Recognition Using a Constituent-based Tagging Scheme. In Proceedings of the 2018 World Wide Web Conference , Association for Computing Machinery, Lyon, France, pages 983–992.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Time expressions and named entities play important roles in data mining, information retrieval, and natural language processing. However, the conventional position-based tagging schemes (e.g., the BIO and BILOU schemes) that previous research used to model time expressions and named entities suffer from the problem of inconsistent tag assignment. To overcome the problem of inconsistent tag assignment, we designed a new type of tagging schemes to model time expressions and named entities based on their constituents. Specifically, to model time expressions, we defined a constituent-based tagging scheme termed TOMN scheme with four tags, namely T, O, M, and N, indicating the defined constituents of time expressions, namely time token, modifier, numeral, and the words outside time expressions. To model named entities, we defined a constituent-based tagging scheme termed UGTO scheme with four tags, namely U, G, T, and O, indicating the defined constituents of named entities, namely uncommon word, general modifier, trigger word, and the words outside named entities. In modeling, our TOMN and UGTO schemes model time expressions and named entities under conditional random fields with minimal features according to an in-depth analysis for the characteristics of time expressions and named entities. Experiments on diverse datasets demonstrate that our proposed methods perform equally with or more effectively than representative state-of-the-art methods on both time expression extraction and named entity extraction.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Cognitive Computation 4/2020 Zur Ausgabe

Premium Partner