Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2013

01.10.2013 | Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment

Fabrication and Characterization of Naturally Selected Epitaxial Fe-{111} Y2Ti2O7 Mesoscopic Interfaces: Some Potential Implications to Nano-Oxide Dispersion-Strengthened Steels

verfasst von: Tiberiu Stan, Yuan Wu, George R. Odette, Kurt E. Sickafus, Hannah A. Dabkowska, Bruce D. Gaulin

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The smallest features of ≈2 to 3 nm in nanostructured ferritic alloys (NFA), a variant of oxide dispersion-strengthened steels, include the Y2Ti2O7 complex oxide cubic pyrochlore phase. The interface between the bcc Fe-Cr ferrite matrix and the fcc nanometer-scale Y2Ti2O7 plays a critical role in the stability, strength, and damage tolerance of NFA. To complement other characterization studies of the actual nanofeatures (NF) themselves, mesoscopic interfaces were created by electron beam deposition of a thin Fe layer on a 5 deg miscut {111} Y2Ti2O7 bulk single crystal surface. While the mesoscopic interfaces may differ from those of the embedded NF, the former facilitate characterization of controlled interfaces, such as interactions with point defects and helium. The Fe-Y2Ti2O7 interfaces were studied using scanning electron microscopy, including electron backscatter diffraction, atomic force microscopy, X-ray diffraction, and transmission electron microscopy (TEM). The polycrystalline Fe layer has two general orientation relationships (OR) that are close to (a) the Nishiyama–Wasserman (NW) OR \( \left\{ {110} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and (b) \( \left\{ {100} \right\}_{\text{Fe}} ||\left\{ {111} \right\}_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \) and \( \left\langle {100} \right\rangle_{\text{Fe}} ||\left\langle {110} \right\rangle_{{{\text{Y}}_{2} {\text{Ti}}_{2} {\text{O}}_{7} }} \). High-resolution TEM shows that the NW interface is near-atomically flat, while the {100}Fe grains are an artifact associated with a thin oxide layer. However, the fact that there is still a Fe-Y2Ti2O7 OR is significant. No OR is observed in the presence of a thicker oxide layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.R. Odette, M.J. Alinger, and B.D. Wirth: Annu. Rev. Mater. Res., 2008, Vol. 38, pp. 471–503.CrossRef G.R. Odette, M.J. Alinger, and B.D. Wirth: Annu. Rev. Mater. Res., 2008, Vol. 38, pp. 471–503.CrossRef
2.
Zurück zum Zitat Y. Dai, G.R. Odette, and T. Yamamoto: Compr. Nucl. Mater., 2012, Vol. 1(6), pp. 141–193.CrossRef Y. Dai, G.R. Odette, and T. Yamamoto: Compr. Nucl. Mater., 2012, Vol. 1(6), pp. 141–193.CrossRef
3.
4.
Zurück zum Zitat M.J. Demkowicz, R.G. Hoagland, and J. P. Hirth: Phys. Rev. Lett., 2008, Vol. 100, pp. 136102.CrossRef M.J. Demkowicz, R.G. Hoagland, and J. P. Hirth: Phys. Rev. Lett., 2008, Vol. 100, pp. 136102.CrossRef
5.
Zurück zum Zitat H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. de Carlan, J. Bechade, T. Cozzika, and J. Malaplate: J. Nucl. Mater., 2009, Vol. 386–388, pp. 511–14.CrossRef H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. de Carlan, J. Bechade, T. Cozzika, and J. Malaplate: J. Nucl. Mater., 2009, Vol. 386–388, pp. 511–14.CrossRef
6.
Zurück zum Zitat S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, and S. Ohnuki: Philos. Mag. Lett., 2004, Vol. 84, pp. 525–29.CrossRef S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, and S. Ohnuki: Philos. Mag. Lett., 2004, Vol. 84, pp. 525–29.CrossRef
7.
Zurück zum Zitat S. Yamashita, N. Akasaka, and S. Ohnuki: J. Nucl. Mater., 2004, Vol. 329–333, pp. 377–81.CrossRef S. Yamashita, N. Akasaka, and S. Ohnuki: J. Nucl. Mater., 2004, Vol. 329–333, pp. 377–81.CrossRef
8.
Zurück zum Zitat M. Klimiankou, R. Lindau, and A. Möslang: J. Nucl. Mater., 2004, Vol. 329–333, pp. 347–51.CrossRef M. Klimiankou, R. Lindau, and A. Möslang: J. Nucl. Mater., 2004, Vol. 329–333, pp. 347–51.CrossRef
9.
Zurück zum Zitat M. Klimiankou, R. Lindau, and A. Möslang: Micron, 2005, Vol. 36, pp. 1–8.CrossRef M. Klimiankou, R. Lindau, and A. Möslang: Micron, 2005, Vol. 36, pp. 1–8.CrossRef
10.
Zurück zum Zitat T. Okuda, and M. Fujiwara: J. Mater. Sci. Lett., 1995, Vol. 14, pp. 1600–03.CrossRef T. Okuda, and M. Fujiwara: J. Mater. Sci. Lett., 1995, Vol. 14, pp. 1600–03.CrossRef
11.
Zurück zum Zitat Y. Wu, E.M. Haney, N.J. Cunningham, and G.R. Odette: Acta Mater., 2012, Vol. 60, pp. 3456–68.CrossRef Y. Wu, E.M. Haney, N.J. Cunningham, and G.R. Odette: Acta Mater., 2012, Vol. 60, pp. 3456–68.CrossRef
12.
Zurück zum Zitat J. Ciston, Y. Wu, G.R. Odette, and P. Hosemann: Microsc. Microalan., 2012, vol. 18, pp. 760–61.CrossRef J. Ciston, Y. Wu, G.R. Odette, and P. Hosemann: Microsc. Microalan., 2012, vol. 18, pp. 760–61.CrossRef
13.
Zurück zum Zitat S.S. Vagarali, and G.R. Odette: J. Nucl. Mater., 1981, vol. 104, pp. 1239–43.CrossRef S.S. Vagarali, and G.R. Odette: J. Nucl. Mater., 1981, vol. 104, pp. 1239–43.CrossRef
14.
16.
17.
Zurück zum Zitat G.R. Odette, P. Miao, D.J. Edwards, T. Yamamoto, R.J. Kurtz, and H. Tanigawa: J. Nucl. Mater., 2011, Vol 417, pp. 1001–04.CrossRef G.R. Odette, P. Miao, D.J. Edwards, T. Yamamoto, R.J. Kurtz, and H. Tanigawa: J. Nucl. Mater., 2011, Vol 417, pp. 1001–04.CrossRef
18.
Zurück zum Zitat S.Y. Zhong, J. Ribis, V. Klosek, Y. de Carlan, N. Lochet, V. Ji, and M.H. Mathon: J. Nucl. Mater., 2012, Vol. 428, pp. 154–59.CrossRef S.Y. Zhong, J. Ribis, V. Klosek, Y. de Carlan, N. Lochet, V. Ji, and M.H. Mathon: J. Nucl. Mater., 2012, Vol. 428, pp. 154–59.CrossRef
19.
Zurück zum Zitat M. J. Alinger, G. R. Odette, and D. T. Hoelzer: J. Nucl. Mater., Vol. 329–333, 2004, pp. 382–86.CrossRef M. J. Alinger, G. R. Odette, and D. T. Hoelzer: J. Nucl. Mater., Vol. 329–333, 2004, pp. 382–86.CrossRef
20.
Zurück zum Zitat J.S. Gardner, B.D. Gaulin, and D.M. Paul: J. Cryst. Growth, 1998, Vol. 191, pp. 740–45.CrossRef J.S. Gardner, B.D. Gaulin, and D.M. Paul: J. Cryst. Growth, 1998, Vol. 191, pp. 740–45.CrossRef
21.
Zurück zum Zitat H.A. Dabkowska and A.B. Dabkowski: Spring. Handb. Cryst. Growth., 2010, pp. 367–92. H.A. Dabkowska and A.B. Dabkowski: Spring. Handb. Cryst. Growth., 2010, pp. 367–92.
22.
Zurück zum Zitat M.B. Johnson, D.D. James, A. Bourque, H.A. Dabkowska, and B.D. Gaulin: J. Solid State Chem., 2009, Vol. 182, pp. 725–29.CrossRef M.B. Johnson, D.D. James, A. Bourque, H.A. Dabkowska, and B.D. Gaulin: J. Solid State Chem., 2009, Vol. 182, pp. 725–29.CrossRef
23.
24.
Zurück zum Zitat A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsasser, and P. Gumbsch: Phys. Rev. B, 2008, Vol. 77, pp. 094131.CrossRef A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsasser, and P. Gumbsch: Phys. Rev. B, 2008, Vol. 77, pp. 094131.CrossRef
25.
26.
Zurück zum Zitat C.A. Williams, E.A. Marquis, A. Cerezo, and G.D. Smith: J. Nucl. Mater., 2010, Vol. 400, pp. 37–45.CrossRef C.A. Williams, E.A. Marquis, A. Cerezo, and G.D. Smith: J. Nucl. Mater., 2010, Vol. 400, pp. 37–45.CrossRef
Metadaten
Titel
Fabrication and Characterization of Naturally Selected Epitaxial Fe-{111} Y2Ti2O7 Mesoscopic Interfaces: Some Potential Implications to Nano-Oxide Dispersion-Strengthened Steels
verfasst von
Tiberiu Stan
Yuan Wu
George R. Odette
Kurt E. Sickafus
Hannah A. Dabkowska
Bruce D. Gaulin
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-1827-3

Weitere Artikel der Ausgabe 10/2013

Metallurgical and Materials Transactions A 10/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.