Skip to main content
Erschienen in: Colloid and Polymer Science 11/2011

01.07.2011 | Original Contribution

Fabrication of carbon microcapsules containing silicon nanoparticles for anode in lithium ion battery

verfasst von: Joonwon Bae

Erschienen in: Colloid and Polymer Science | Ausgabe 11/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon microcapsules containing silicon (Si) nanoparticles (NPs) were prepared from silicon-embedded polymer microspheres. The precursors, polymeric microspheres containing silicon nanoparticles were fabricated by a facile emulsion polymerization with surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The effects of monomer, surfactant concentration, and ionic character of surfactant on the formation of microspheres were demonstrated. The successful fabrication of polystyrene/polydivinylbenzene microspheres with Si NPs was confirmed by scanning electron microscopy. Subsequent thermal treatment produced carbon microcapsules having Si NPs. Volume shrinkage of polymer spheres during carbonization step resulting in the formation of internal free spaces in carbon microcapsules is the critical process in this experiment, which can accommodate volume changes of Si NPs during Li ion charge/discharge processes. The successful encapsulation of Si NPs with exterior carbon shell was clearly shown by transmission electron microscopy and X-ray diffraction. The change in size distribution and structure of polymer and carbon microspheres was also revealed. The cyclic performances of these Si@C microcapsules were measured with lithium battery half cell tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl 47:2930–2946CrossRef
2.
Zurück zum Zitat Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878CrossRef Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878CrossRef
3.
Zurück zum Zitat Brousselya M, Biensanb P, Simon B (1999) Lithium insertion into host materials: the key to success for Li ion batteries. Electrochim Acta 45:3CrossRef Brousselya M, Biensanb P, Simon B (1999) Lithium insertion into host materials: the key to success for Li ion batteries. Electrochim Acta 45:3CrossRef
4.
Zurück zum Zitat Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG (2005) Amorphous carbon-coated tin anode material for lithium secondary battery. Chem Mater 17:1926CrossRef Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG (2005) Amorphous carbon-coated tin anode material for lithium secondary battery. Chem Mater 17:1926CrossRef
5.
Zurück zum Zitat Lee kT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652CrossRef Lee kT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652CrossRef
6.
Zurück zum Zitat Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160CrossRef Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160CrossRef
7.
Zurück zum Zitat Lou XW, Li CM, Archer LA (2009) Content designed synthesis of coaxial sno2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536CrossRef Lou XW, Li CM, Archer LA (2009) Content designed synthesis of coaxial sno2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536CrossRef
8.
Zurück zum Zitat Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin–carbon electrode. Angew Chem Int Ed 48:1660CrossRef Deng D, Lee JY (2009) Reversible storage of lithium in a rambutan-like tin–carbon electrode. Angew Chem Int Ed 48:1660CrossRef
9.
Zurück zum Zitat Chen G, Wang Z, Xia D (2008) One-pot synthesis of carbon nanotube@sno2 − au coaxial nanocable for lithium-ion batteries with high rate capability. Chem Mater 20:6951CrossRef Chen G, Wang Z, Xia D (2008) One-pot synthesis of carbon nanotube@sno2 − au coaxial nanocable for lithium-ion batteries with high rate capability. Chem Mater 20:6951CrossRef
10.
Zurück zum Zitat Grigoriants I, Sominski L, Li H, Ifargan I, Aurbach D, Gedanken A (2005) The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries Chem Commun 921. Grigoriants I, Sominski L, Li H, Ifargan I, Aurbach D, Gedanken A (2005) The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries Chem Commun 921.
11.
Zurück zum Zitat Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J Phys Chem B 109:20200CrossRef Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J Phys Chem B 109:20200CrossRef
12.
Zurück zum Zitat Kim T, Mo YH, Nahm KS, Oh SM (2006) Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries. J Power Sources 162:1275CrossRef Kim T, Mo YH, Nahm KS, Oh SM (2006) Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries. J Power Sources 162:1275CrossRef
13.
Zurück zum Zitat Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM (2008) Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources 176:353CrossRef Lee JH, Kim WJ, Kim JY, Lim SH, Lee SM (2008) Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources 176:353CrossRef
14.
Zurück zum Zitat Ng SH, Wang J, Wexler D, Chew SY, Liu HK (2007) Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131CrossRef Ng SH, Wang J, Wexler D, Chew SY, Liu HK (2007) Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131CrossRef
15.
Zurück zum Zitat Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Pérès JP, Talaga D, Couzi M, Tarascon JM (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv Funct Mater 17:1765CrossRef Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Pérès JP, Talaga D, Couzi M, Tarascon JM (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv Funct Mater 17:1765CrossRef
16.
Zurück zum Zitat Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067CrossRef Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067CrossRef
17.
Zurück zum Zitat Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed 45:6896CrossRef Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed 45:6896CrossRef
18.
Zurück zum Zitat Hu YS, Demir-Cakan R, Titirici Mm, Mueller JO, Schloegl R, Antonietti A, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed 47:1645CrossRef Hu YS, Demir-Cakan R, Titirici Mm, Mueller JO, Schloegl R, Antonietti A, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed 47:1645CrossRef
19.
Zurück zum Zitat Peng K, Jie J, Zhang W, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93:033105CrossRef Peng K, Jie J, Zhang W, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett 93:033105CrossRef
20.
Zurück zum Zitat Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48:1579CrossRef Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48:1579CrossRef
21.
Zurück zum Zitat Kima JH, Sohn HJ, Kim H, Jeong G, Choi W (2007) Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources 170:456CrossRef Kima JH, Sohn HJ, Kim H, Jeong G, Choi W (2007) Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources 170:456CrossRef
22.
Zurück zum Zitat Kang DK, Corno JA, Gole JL, Shin HC (2008) Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J Electrochem Soc 155:A276CrossRef Kang DK, Corno JA, Gole JL, Shin HC (2008) Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J Electrochem Soc 155:A276CrossRef
23.
Zurück zum Zitat Jung YS, Lee KT, Oh SM (2007) Si–carbon core–shell composite anode in lithium secondary batteries. Electrochim Acta 52:7061CrossRef Jung YS, Lee KT, Oh SM (2007) Si–carbon core–shell composite anode in lithium secondary batteries. Electrochim Acta 52:7061CrossRef
24.
Zurück zum Zitat Kim H, Cho J, Lett N (2008) Superior lithium electroactive mesoporous Si@Carbon core−shell nanowires for lithium battery. Anode Material 8:3688 Kim H, Cho J, Lett N (2008) Superior lithium electroactive mesoporous Si@Carbon core−shell nanowires for lithium battery. Anode Material 8:3688
25.
Zurück zum Zitat Guo TG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19:2087CrossRef Guo TG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19:2087CrossRef
26.
Zurück zum Zitat Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Lu GQ, Cheng HM (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18:3787CrossRef Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Lu GQ, Cheng HM (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18:3787CrossRef
27.
Zurück zum Zitat Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42:1147CrossRef Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beguin F, Bonnamy S (2004) Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42:1147CrossRef
28.
Zurück zum Zitat Takami N, Inagaki H, Kishi T, Harada Y, Fujita T, Hoshina K (2009) Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode. J Electrochem Soc 156:A128CrossRef Takami N, Inagaki H, Kishi T, Harada Y, Fujita T, Hoshina K (2009) Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode. J Electrochem Soc 156:A128CrossRef
29.
Zurück zum Zitat Fu LJ, Liu H, Zhang HP, Li C, Zhang T, Wu YP, Wu HQ (2006) Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. J Power Sources 159:219CrossRef Fu LJ, Liu H, Zhang HP, Li C, Zhang T, Wu YP, Wu HQ (2006) Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. J Power Sources 159:219CrossRef
30.
Zurück zum Zitat Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous. Mater Sci 270:590 Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous. Mater Sci 270:590
31.
Zurück zum Zitat Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556CrossRef Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556CrossRef
32.
Zurück zum Zitat Bonino F, Brutti S, Reale P, Scrosati B, Gherghel L, Wu J, Muellen K (2005) A disordered carbon as a novel anode material in lithium-ion cells. Adv Mater 17:743CrossRef Bonino F, Brutti S, Reale P, Scrosati B, Gherghel L, Wu J, Muellen K (2005) A disordered carbon as a novel anode material in lithium-ion cells. Adv Mater 17:743CrossRef
33.
Zurück zum Zitat Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547CrossRef Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547CrossRef
34.
Zurück zum Zitat Flandroisa S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37:165CrossRef Flandroisa S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37:165CrossRef
35.
Zurück zum Zitat Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183CrossRef Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183CrossRef
36.
Zurück zum Zitat Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webleyb PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 2641 Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webleyb PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 2641
37.
Zurück zum Zitat Mochida I, Ku CH, Yoon SH, Korai Y (1998) Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. J Power Sources 75:214CrossRef Mochida I, Ku CH, Yoon SH, Korai Y (1998) Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. J Power Sources 75:214CrossRef
38.
Zurück zum Zitat Teixidor GT, Zaouk RB, Park BY, Madou MJ (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J Power Sources 183:730CrossRef Teixidor GT, Zaouk RB, Park BY, Madou MJ (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J Power Sources 183:730CrossRef
40.
Zurück zum Zitat Megahead S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79CrossRef Megahead S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79CrossRef
41.
Zurück zum Zitat L. F. Nazar and O. Crosnier In: Lithium Batteries Sciences and Technology, G. -A. Nazri and G. Pistoria, (eds) p. 112, Kluwer Academic/Plenum, Boston (2004) L. F. Nazar and O. Crosnier In: Lithium Batteries Sciences and Technology, G. -A. Nazri and G. Pistoria, (eds) p. 112, Kluwer Academic/Plenum, Boston (2004)
42.
Zurück zum Zitat Hasegawa T, Mukai SR, Shirota Y, Tamon T (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42:2573CrossRef Hasegawa T, Mukai SR, Shirota Y, Tamon T (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42:2573CrossRef
43.
Zurück zum Zitat Eom JY, Park JW, Kwon HS, Rajendran S (2006) Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J Electrochem Soc 153:A1678CrossRef Eom JY, Park JW, Kwon HS, Rajendran S (2006) Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J Electrochem Soc 153:A1678CrossRef
44.
Zurück zum Zitat Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8:51CrossRef Shu J, Li H, Yang R, Shi Y, Huang X (2006) Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem Commun 8:51CrossRef
45.
Zurück zum Zitat Zhang Y, Zhange XG, Zhang HL, Zhao ZG, Li F, Liu C, Cheng HM (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta 51:94 Zhang Y, Zhange XG, Zhang HL, Zhao ZG, Li F, Liu C, Cheng HM (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim Acta 51:94
46.
Zurück zum Zitat Wang W, Kumta PN (2007) Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J Power Sources 172:650CrossRef Wang W, Kumta PN (2007) Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J Power Sources 172:650CrossRef
47.
Zurück zum Zitat Holmberg K, Joensson B, Kronberg B, Lindman B (2003) Surfactants and Polymers in Aqueous Solution. Wiley, West Sussex, England Holmberg K, Joensson B, Kronberg B, Lindman B (2003) Surfactants and Polymers in Aqueous Solution. Wiley, West Sussex, England
48.
Zurück zum Zitat Jang J, Bae J (2004) Fabrication of polymer nanofibers and carbon nanofibers by using a salt-assisted microemulsion polymerization. Angew Chem Int Ed 43:3803CrossRef Jang J, Bae J (2004) Fabrication of polymer nanofibers and carbon nanofibers by using a salt-assisted microemulsion polymerization. Angew Chem Int Ed 43:3803CrossRef
49.
Zurück zum Zitat JE Mark (1999) in Polymer Data Handbook, Oxford University Press, New York, USA JE Mark (1999) in Polymer Data Handbook, Oxford University Press, New York, USA
50.
Zurück zum Zitat Jang J, Oh J (2004) A top–down approach to fullerene fabrication using a polymer nanoparticle precursor. Adv Mater 16:1650CrossRef Jang J, Oh J (2004) A top–down approach to fullerene fabrication using a polymer nanoparticle precursor. Adv Mater 16:1650CrossRef
51.
Zurück zum Zitat Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3:31CrossRef Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3:31CrossRef
52.
Zurück zum Zitat Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A (2002) Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem Mater 14:4155CrossRef Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A (2002) Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem Mater 14:4155CrossRef
53.
Zurück zum Zitat Lee HY, Lee SM (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6:465CrossRef Lee HY, Lee SM (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6:465CrossRef
Metadaten
Titel
Fabrication of carbon microcapsules containing silicon nanoparticles for anode in lithium ion battery
verfasst von
Joonwon Bae
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 11/2011
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-011-2449-1

Weitere Artikel der Ausgabe 11/2011

Colloid and Polymer Science 11/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.