Skip to main content
Erschienen in: Metal Science and Heat Treatment 1-2/2018

15.06.2018

Fabrication, Structure and Properties of a Composite from Aluminum Matrix Reinforced with Carbon Nanofibers

verfasst von: V. N. Tsemenko, O. V. Tolochko, T. S. Kol’tsova, S. V. Ganin, V. G. Mikhailov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 1-2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An effective process for fabricating a composite aluminum-base material reinforced with carbon nanofibers, which includes introduction of nanoparticles into an aluminum matrix, optimization of the size composition of the powder mixture, compaction, and plastic deformation of preforms by hot extrusion, is described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Y. Liu, K. Zhao, B. L. Xiao, et al., “Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing,” Mater. Design, 97, 424 – 430 (2016).CrossRef Z. Y. Liu, K. Zhao, B. L. Xiao, et al., “Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing,” Mater. Design, 97, 424 – 430 (2016).CrossRef
2.
Zurück zum Zitat S. Yu. Kondrat’ev and O. V. Shvetsov, “Effect of high-temperature heating on the structure and properties of aluminum alloys in the production of drill pipes,” Metal Sci. Heat Treat., 55(3 – 4), 191 – 196 (2013). S. Yu. Kondrat’ev and O. V. Shvetsov, “Effect of high-temperature heating on the structure and properties of aluminum alloys in the production of drill pipes,” Metal Sci. Heat Treat., 55(3 – 4), 191 – 196 (2013).
3.
Zurück zum Zitat S. Yu. Kondrat’ev, O. G. Zotov, and O. V. Shvetsov, “Structural stability and variation of properties of aluminum alloys D16 and 1953 in production and operation of drill pipes,” Metal Sci. Heat Treat., 55(9 – 10), 626 – 532 (2013). S. Yu. Kondrat’ev, O. G. Zotov, and O. V. Shvetsov, “Structural stability and variation of properties of aluminum alloys D16 and 1953 in production and operation of drill pipes,” Metal Sci. Heat Treat., 55(9 – 10), 626 – 532 (2013).
4.
Zurück zum Zitat S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., 74, 281 – 350 (2013).CrossRef S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., 74, 281 – 350 (2013).CrossRef
5.
Zurück zum Zitat S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotubes reinforced metal matrix composites,” Int. Mater. Rev., 55(1), 41 – 64 (2010).CrossRef S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotubes reinforced metal matrix composites,” Int. Mater. Rev., 55(1), 41 – 64 (2010).CrossRef
6.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015). A. I. Rudskoy, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015).
7.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Technology of the layer-by-layer electron beam synthesis of powder articles in vacuum,” Zagot. Proizvod. Mashinostr., No. 8, 40 – 45 (2014). A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Technology of the layer-by-layer electron beam synthesis of powder articles in vacuum,” Zagot. Proizvod. Mashinostr., No. 8, 40 – 45 (2014).
8.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Algorithm and technological processes of electron beam synthesis of powder parts in vacuum,” Tekhnol. Mashinostr., No. 1, 11 – 16 (2015). A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “Algorithm and technological processes of electron beam synthesis of powder parts in vacuum,” Tekhnol. Mashinostr., No. 1, 11 – 16 (2015).
9.
Zurück zum Zitat V. N. Kokorin, A. I. Rudskoy, V. I. Filimonov, et al., Theory and Practice of the Process of Pressing of Heterophase Moistened Iron-Base Mechanical Mixtures [in Russian], Izd. UlGTU, Ul’yanovsk (2012), 236 p. V. N. Kokorin, A. I. Rudskoy, V. I. Filimonov, et al., Theory and Practice of the Process of Pressing of Heterophase Moistened Iron-Base Mechanical Mixtures [in Russian], Izd. UlGTU, Ul’yanovsk (2012), 236 p.
10.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Metal Sci. Heat Treat., 58(1 – 2), 27 – 32 (2016). A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Metal Sci. Heat Treat., 58(1 – 2), 27 – 32 (2016).
11.
Zurück zum Zitat S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 2. Practical RESULTS FOR ALLOY VT6,” Metal Sci. Heat Treat., 58(3 – 4), 15 – 169 (2016). S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 2. Practical RESULTS FOR ALLOY VT6,” Metal Sci. Heat Treat., 58(3 – 4), 15 – 169 (2016).
12.
Zurück zum Zitat E. Carreno-Morelli, J. Yang, E. Couteau, et al., “Carbon nanotube /magnesium composites,” Phys. Status Solidi (a), 201(8), R53 – R55 (2004). E. Carreno-Morelli, J. Yang, E. Couteau, et al., “Carbon nanotube /magnesium composites,” Phys. Status Solidi (a), 201(8), R53 – R55 (2004).
13.
Zurück zum Zitat T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, “Processing of carbon nanotube reinforced aluminum composite,” J. Mater. Res., 13, 2445 – 2449 (1998).CrossRef T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito, “Processing of carbon nanotube reinforced aluminum composite,” J. Mater. Res., 13, 2445 – 2449 (1998).CrossRef
14.
Zurück zum Zitat R. Xu, Z. Tan, D. Xiong et. al., “Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling,” Composites, Part A, 93, 57 – 66 (2017). R. Xu, Z. Tan, D. Xiong et. al., “Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling,” Composites, Part A, 93, 57 – 66 (2017).
15.
Zurück zum Zitat A. I. Rudskoy, V. N. Tsemenko, and S. V. Ganin, “A study of the process of compaction and deformation of a powder composite material of the ‘aluminum – rare earth elements’ system,” Metalloved. Term Obrab. Met., No. 10, 25 – 31 (2014). A. I. Rudskoy, V. N. Tsemenko, and S. V. Ganin, “A study of the process of compaction and deformation of a powder composite material of the ‘aluminum – rare earth elements’ system,” Metalloved. Term Obrab. Met., No. 10, 25 – 31 (2014).
16.
Zurück zum Zitat T. S. Kol’tsova, F. M. Shakhov, A. A. Voznyakovskii, et al., “Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing,” Tech. Phys., 59(1), 1626 – 1630 (2014). T. S. Kol’tsova, F. M. Shakhov, A. A. Voznyakovskii, et al., “Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing,” Tech. Phys., 59(1), 1626 – 1630 (2014).
17.
Zurück zum Zitat A. I. Rudskoy, Yu. I. Rybin, and V. N. Tsemenko, “Condition of plasticity of powder materials,” Vest. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, No. 4, 93 – 98 (2006). A. I. Rudskoy, Yu. I. Rybin, and V. N. Tsemenko, “Condition of plasticity of powder materials,” Vest. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, No. 4, 93 – 98 (2006).
18.
Zurück zum Zitat D. V. Fuk, V. N. Tsemenko, and S. V. Ganin, “Simulation and investigation of the process of compaction of powder materials with the use of ABAQUS software,” Nauch.-Tekh. Vedom. SPbGPU, No. 1, 100 – 110 (2016). D. V. Fuk, V. N. Tsemenko, and S. V. Ganin, “Simulation and investigation of the process of compaction of powder materials with the use of ABAQUS software,” Nauch.-Tekh. Vedom. SPbGPU, No. 1, 100 – 110 (2016).
19.
Zurück zum Zitat V. N. Tsemenko, V. L. Girshov, and S. A. Mazurov, “Simulation of the process of hot extrusion of a powder high-speed steel,” Nauch.-Tekh. Vedom. SPbGPU, No. 4(135), 235 – 241 (2011). V. N. Tsemenko, V. L. Girshov, and S. A. Mazurov, “Simulation of the process of hot extrusion of a powder high-speed steel,” Nauch.-Tekh. Vedom. SPbGPU, No. 4(135), 235 – 241 (2011).
20.
Zurück zum Zitat V. N. Tsemenko, S. V. Ganin, and D. V. Phuc, “Research and simulation of the deformation process of dispersion-hardened powder in a capsule,” Mater. Phys. Mech., 25(1), 68 – 76 (2016). V. N. Tsemenko, S. V. Ganin, and D. V. Phuc, “Research and simulation of the deformation process of dispersion-hardened powder in a capsule,” Mater. Phys. Mech., 25(1), 68 – 76 (2016).
21.
Zurück zum Zitat V. N. Tsemenko, D. V. Fuk, and S. A. Ganin, “Determination of rheological characteristics and simulation of the process of extrusion of powder and porous materials. Part 1, Powder body,” Nauch.-Tekh. Vedom. SPbGPU, No. 2, 124 – 133 (2016). V. N. Tsemenko, D. V. Fuk, and S. A. Ganin, “Determination of rheological characteristics and simulation of the process of extrusion of powder and porous materials. Part 1, Powder body,” Nauch.-Tekh. Vedom. SPbGPU, No. 2, 124 – 133 (2016).
22.
Zurück zum Zitat S. A. Batugin, A. V. Biryukov, and R. M. Kylatchanov, Size Grading of Geomaterials [in Russian], Nauka, Novosibirsk (1989), 173 p. S. A. Batugin, A. V. Biryukov, and R. M. Kylatchanov, Size Grading of Geomaterials [in Russian], Nauka, Novosibirsk (1989), 173 p.
Metadaten
Titel
Fabrication, Structure and Properties of a Composite from Aluminum Matrix Reinforced with Carbon Nanofibers
verfasst von
V. N. Tsemenko
O. V. Tolochko
T. S. Kol’tsova
S. V. Ganin
V. G. Mikhailov
Publikationsdatum
15.06.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 1-2/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0235-0

Weitere Artikel der Ausgabe 1-2/2018

Metal Science and Heat Treatment 1-2/2018 Zur Ausgabe

12th INTERNATIONAL SCIENTIFIC-ENGINEERING CONFERENCE “ADVANCED METALLIC MATERIALS AND TECHNOLOGIES”

New Method of Severe Plastic Deformation of Metals

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.