Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2019

27.02.2019

Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells

verfasst von: M. M. S. Sanad, A. M. Elseman, M. M. Elsenety, M. M. Rashad, B. A. Elsayed

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sulfide-based chalcogenide quaternary semiconductors Cu2MSnS4 where M = Zn, Mn, Ni and, Co have emerged as a promising material for photovoltaic application due to their opto-electrical properties, friendly environment and earth-abundant composition. Herein, we report on the surfactant-assisted, solvent-free, hydrothermal synthesis of Cu2MSnS4 (M = Zn, Mn, Ni, Co) nanoparticles and their application in photovoltaics as well. The kesterite and stannite crystal structure of the investigated compounds were confirmed by powder X-ray diffraction. Raman, Photoluminescence and UV–Vis reflectance spectroscopies were employed to study the lattice vibrational and the optical properties. High-resolution transmittance electron microscopy was performed to study the morphology of nanoparticles size, as well as the crystallinity of chalcogenide compounds. In the presence of Cu2MSnS4 with different divalent transition metal ions (M) = Mn2+, Co2+, Ni2+ and Zn2+ as a hole transport material, the perovskite-sensitized TiO2 films showed power conversion efficiencies of 8.35, 6.24, 7.55 and 4.16%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Himmrich, H. Haeuseler, Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim. Acta A 47(7), 933–942 (1991)CrossRef M. Himmrich, H. Haeuseler, Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim. Acta A 47(7), 933–942 (1991)CrossRef
2.
Zurück zum Zitat P. Fernandes, P. Salomé, A. Da, Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517(7), 2519–2523 (2009)CrossRef P. Fernandes, P. Salomé, A. Da, Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517(7), 2519–2523 (2009)CrossRef
3.
Zurück zum Zitat M. Altosaar et al., Cu2Zn1–xCdxSn (Se1–ySy)4 solid solutions as absorber materials for solar cells. Phys. Status Solidi A 205(1), 167–170 (2008)CrossRef M. Altosaar et al., Cu2Zn1–xCdxSn (Se1–ySy)4 solid solutions as absorber materials for solar cells. Phys. Status Solidi A 205(1), 167–170 (2008)CrossRef
4.
Zurück zum Zitat M. Benchikri et al., A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater. Lett. 68, 340–343 (2012)CrossRef M. Benchikri et al., A high temperature route to the formation of highly pure quaternary chalcogenide particles. Mater. Lett. 68, 340–343 (2012)CrossRef
5.
Zurück zum Zitat K. Mokurala et al., Study of structural, optical and electrical properties of solution processed Cu2CoSnS4 absorber layer for thin film solar cells. In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd. 2015. IEEE K. Mokurala et al., Study of structural, optical and electrical properties of solution processed Cu2CoSnS4 absorber layer for thin film solar cells. In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd. 2015. IEEE
6.
Zurück zum Zitat P. Fernandes, P. Salomé, A. Da, Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509(28), 7600–7606 (2011)CrossRef P. Fernandes, P. Salomé, A. Da, Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509(28), 7600–7606 (2011)CrossRef
7.
Zurück zum Zitat H.-J. Chen et al., Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition. Mater. Lett. 166, 215–218 (2016)CrossRef H.-J. Chen et al., Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition. Mater. Lett. 166, 215–218 (2016)CrossRef
8.
Zurück zum Zitat A. Gillorin et al., Synthesis and optical properties of Cu2CoSnS4 colloidal quantum dots. J. Mater. Chem. 21(15), 5615–5619 (2011)CrossRef A. Gillorin et al., Synthesis and optical properties of Cu2CoSnS4 colloidal quantum dots. J. Mater. Chem. 21(15), 5615–5619 (2011)CrossRef
9.
Zurück zum Zitat L. Chen et al., Strategic improvement of Cu2MnSnS4 films by two distinct post-annealing processes for constructing thin film solar cells. Acta Mater. 109, 1–7 (2016)CrossRef L. Chen et al., Strategic improvement of Cu2MnSnS4 films by two distinct post-annealing processes for constructing thin film solar cells. Acta Mater. 109, 1–7 (2016)CrossRef
10.
Zurück zum Zitat J. Yu et al., Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method. Mater. Lett. 191, 186–188 (2017)CrossRef J. Yu et al., Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method. Mater. Lett. 191, 186–188 (2017)CrossRef
11.
Zurück zum Zitat S. Sarkar et al., Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route. Mater. Lett. 152, 155–158 (2015)CrossRef S. Sarkar et al., Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route. Mater. Lett. 152, 155–158 (2015)CrossRef
12.
Zurück zum Zitat K. Mokurala et al., Influence of dipping cycles on physical, optical, and electrical properties of Cu2NiSnS4: direct solution dip coating for photovoltaic applications. J. Alloys Compd. 725, 510–518 (2017)CrossRef K. Mokurala et al., Influence of dipping cycles on physical, optical, and electrical properties of Cu2NiSnS4: direct solution dip coating for photovoltaic applications. J. Alloys Compd. 725, 510–518 (2017)CrossRef
13.
Zurück zum Zitat L. Chen et al., Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv. 5(102), 84295–84302 (2015)CrossRef L. Chen et al., Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv. 5(102), 84295–84302 (2015)CrossRef
14.
Zurück zum Zitat H. Guan et al., Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater. Sci. Semicond. Process. 25, 159–162 (2014)CrossRef H. Guan et al., Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater. Sci. Semicond. Process. 25, 159–162 (2014)CrossRef
15.
Zurück zum Zitat D.B. Khadka, J. Kim, Structural, optical and electrical properties of Cu2FeSnX4 (X = S, Se) thin films prepared by chemical spray pyrolysis. J. Alloys Compd. 638, 103–108 (2015)CrossRef D.B. Khadka, J. Kim, Structural, optical and electrical properties of Cu2FeSnX4 (X = S, Se) thin films prepared by chemical spray pyrolysis. J. Alloys Compd. 638, 103–108 (2015)CrossRef
16.
Zurück zum Zitat M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5(23), 11518–11549 (2017)CrossRef M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5(23), 11518–11549 (2017)CrossRef
18.
Zurück zum Zitat S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Rare earth zirconate nanostructures: recent development on preparation and photocatalytic applications. J. Alloys Compd. 767, 1164 (2018)CrossRef S. Zinatloo-Ajabshir, M. Salavati-Niasari, A. Sobhani, Rare earth zirconate nanostructures: recent development on preparation and photocatalytic applications. J. Alloys Compd. 767, 1164 (2018)CrossRef
19.
Zurück zum Zitat S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq. 225, 645 (2017)CrossRef S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq. 225, 645 (2017)CrossRef
20.
Zurück zum Zitat S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391 (2015)CrossRef S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391 (2015)CrossRef
21.
Zurück zum Zitat A.M. Elseman, M.M. Rashad, A.M. Hassan, Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain. Chem. Eng. 4(9), 4875–4886 (2016)CrossRef A.M. Elseman, M.M. Rashad, A.M. Hassan, Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain. Chem. Eng. 4(9), 4875–4886 (2016)CrossRef
22.
Zurück zum Zitat A.M. Elseman, D. Rayan, M. Rashad, Structure, optical and magnetic behavior of nanocrystalline CuO nanopowders synthesized via a new technique using Schiff base complex. J. Mater. Sci. Mater. Electron. 27(3), 2652 (2016)CrossRef A.M. Elseman, D. Rayan, M. Rashad, Structure, optical and magnetic behavior of nanocrystalline CuO nanopowders synthesized via a new technique using Schiff base complex. J. Mater. Sci. Mater. Electron. 27(3), 2652 (2016)CrossRef
23.
Zurück zum Zitat M.M. Rashad, A.M. Elseman, A.M. Hassan, Facile synthesis, characterization and structural evolution of nanorods single-crystalline (C4H9 NH3)2 PbI 2 × 2 mixed halide organometal perovskite for solar cell application. Optik-Int. J. Light Electron. Optics 127(20), 9775–9787 (2016)CrossRef M.M. Rashad, A.M. Elseman, A.M. Hassan, Facile synthesis, characterization and structural evolution of nanorods single-crystalline (C4H9 NH3)2 PbI 2 × 2 mixed halide organometal perovskite for solar cell application. Optik-Int. J. Light Electron. Optics 127(20), 9775–9787 (2016)CrossRef
24.
Zurück zum Zitat A. Elseman et al., Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Mater. Sci. Semicond. Process. 66, 176–185 (2017)CrossRef A. Elseman et al., Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Mater. Sci. Semicond. Process. 66, 176–185 (2017)CrossRef
25.
Zurück zum Zitat A.M. Elseman et al., Copper substituted lead perovskites materials constructed with different halides for working (CH3NH3)2CuX4 based perovskite solar cells from experimental and theoretical view. ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018)CrossRef A.M. Elseman et al., Copper substituted lead perovskites materials constructed with different halides for working (CH3NH3)2CuX4 based perovskite solar cells from experimental and theoretical view. ACS Appl. Mater. Interfaces 10(14), 11699–11707 (2018)CrossRef
26.
Zurück zum Zitat S. Sajid et al., Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408–424 (2018)CrossRef S. Sajid et al., Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408–424 (2018)CrossRef
27.
Zurück zum Zitat D. Wei et al., Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30(31), 1707583 (2018)CrossRef D. Wei et al., Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30(31), 1707583 (2018)CrossRef
28.
Zurück zum Zitat A.M.E. Sajid, J. Ji, S. Dou, H. Huang, P. Cui, D. Wei, M. Li, Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chin. Phys. B 27(1), 17305–017305 (2018)CrossRef A.M.E. Sajid, J. Ji, S. Dou, H. Huang, P. Cui, D. Wei, M. Li, Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chin. Phys. B 27(1), 17305–017305 (2018)CrossRef
29.
Zurück zum Zitat S. Sajid et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10(3), 51 (2018)CrossRef S. Sajid et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10(3), 51 (2018)CrossRef
30.
Zurück zum Zitat A.E. Shalan et al., Nanofibers as Promising Materials for New Generations of Solar Cells, in Handbook of Nanofibers, ed. by A. Barhoum, M. Bechelany, A. Makhlouf (Springer, Cham, 2018), p. 1–33 A.E. Shalan et al., Nanofibers as Promising Materials for New Generations of Solar Cells, in Handbook of Nanofibers, ed. by A. Barhoum, M. Bechelany, A. Makhlouf (Springer, Cham, 2018), p. 1–33
31.
Zurück zum Zitat M.M. Lee et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012) M.M. Lee et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012)
32.
Zurück zum Zitat C. Yi et al., Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater. 28(15), 2964–2970 (2016)CrossRef C. Yi et al., Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater. 28(15), 2964–2970 (2016)CrossRef
33.
Zurück zum Zitat G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015)CrossRef G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015)CrossRef
34.
Zurück zum Zitat A. Kaltzoglou et al., Synthesis, characterization and optoelectronic properties of chemically stable (CH3)3SPbI3–xBrx and (CH3)3SPbI3–xClx (x =0, 1, 2, 3) perovskites. Polyhedron 140, 67–73 (2018)CrossRef A. Kaltzoglou et al., Synthesis, characterization and optoelectronic properties of chemically stable (CH3)3SPbI3–xBrx and (CH3)3SPbI3–xClx (x =0, 1, 2, 3) perovskites. Polyhedron 140, 67–73 (2018)CrossRef
35.
Zurück zum Zitat M.M. Elsenety et al., Synthesis, characterization and use of highly stable trimethyl sulfonium tin (IV) halide defect perovskites in dye sensitized solar cells. Polyhedron 150, 83–91 (2018)CrossRef M.M. Elsenety et al., Synthesis, characterization and use of highly stable trimethyl sulfonium tin (IV) halide defect perovskites in dye sensitized solar cells. Polyhedron 150, 83–91 (2018)CrossRef
36.
Zurück zum Zitat B. Siddhant, Patel et al., A novel and cost effective CZTS hole transport material applied in perovskite solar cells. CrystEngComm. 20(47), 7677–7687 (2018)CrossRef B. Siddhant, Patel et al., A novel and cost effective CZTS hole transport material applied in perovskite solar cells. CrystEngComm. 20(47), 7677–7687 (2018)CrossRef
37.
Zurück zum Zitat Qiliang, Wu et al., Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7(51), 28466–28473 (2015)CrossRef Qiliang, Wu et al., Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7(51), 28466–28473 (2015)CrossRef
38.
Zurück zum Zitat L.S. Khanzada et al., Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells. J. Adv. Funct. Mater. 26, 8300–8306 (2016)CrossRef L.S. Khanzada et al., Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells. J. Adv. Funct. Mater. 26, 8300–8306 (2016)CrossRef
39.
Zurück zum Zitat M.A. Green et al., Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015)CrossRef M.A. Green et al., Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015)CrossRef
40.
Zurück zum Zitat M. Sanad, M. Rashad, A.Y. Shenouda, Novel CuIn1-xGaxTe2 structures for high efficiency photo-electrochemical solar cells. Int. J. Electrochem. Sci. 11, 4337–4351 (2016)CrossRef M. Sanad, M. Rashad, A.Y. Shenouda, Novel CuIn1-xGaxTe2 structures for high efficiency photo-electrochemical solar cells. Int. J. Electrochem. Sci. 11, 4337–4351 (2016)CrossRef
41.
Zurück zum Zitat J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells—a review. Energy Environ. Sci. 10(6), 1306–1319 (2017)CrossRef J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells—a review. Energy Environ. Sci. 10(6), 1306–1319 (2017)CrossRef
42.
Zurück zum Zitat F. López-Vergara et al., Cu2Mn1–xCoxSnS4: novel kësterite type solid solutions. J. Solid State Chem. 198, 386–391 (2013)CrossRef F. López-Vergara et al., Cu2Mn1–xCoxSnS4: novel kësterite type solid solutions. J. Solid State Chem. 198, 386–391 (2013)CrossRef
43.
Zurück zum Zitat Q. Tian et al., Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn (S, Se)4 solar cells. Chem. Mater. 26(10), 3098–3103 (2014)CrossRef Q. Tian et al., Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn (S, Se)4 solar cells. Chem. Mater. 26(10), 3098–3103 (2014)CrossRef
44.
Zurück zum Zitat R. Schurr et al., The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films 517(7), 2465–2468 (2009)CrossRef R. Schurr et al., The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films 517(7), 2465–2468 (2009)CrossRef
45.
Zurück zum Zitat N. Kattan et al., Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl. Mater. Today 1(1), 52–59 (2015)CrossRef N. Kattan et al., Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl. Mater. Today 1(1), 52–59 (2015)CrossRef
46.
Zurück zum Zitat S. Schorr, The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95(6), 1482–1488 (2011)CrossRef S. Schorr, The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95(6), 1482–1488 (2011)CrossRef
47.
Zurück zum Zitat P. Fernandes, P. Salomé, A. Da, Cunha, CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. Phys. Status Solidi C 7(3-4), 901–904 (2010) P. Fernandes, P. Salomé, A. Da, Cunha, CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. Phys. Status Solidi C 7(3-4), 901–904 (2010)
48.
Zurück zum Zitat H.-J. Koo, Density functional investigation of the magnetic superstructure of Cu2MnSnS4. Solid State Commun. 152(17), 1683–1685 (2012)CrossRef H.-J. Koo, Density functional investigation of the magnetic superstructure of Cu2MnSnS4. Solid State Commun. 152(17), 1683–1685 (2012)CrossRef
49.
Zurück zum Zitat L. Chen et al., Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique. J. Alloys Compd. 640, 23–28 (2015)CrossRef L. Chen et al., Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique. J. Alloys Compd. 640, 23–28 (2015)CrossRef
50.
Zurück zum Zitat C. Yang et al., Structural, optical and magnetic properties of Cu2NiSnS4 thin films deposited by facile one-step electrodeposition. Mater. Lett. 166, 101–104 (2016)CrossRef C. Yang et al., Structural, optical and magnetic properties of Cu2NiSnS4 thin films deposited by facile one-step electrodeposition. Mater. Lett. 166, 101–104 (2016)CrossRef
51.
Zurück zum Zitat C. Persson, Electronic and optical properties of Cu2 ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107(5), 053710 (2010)CrossRef C. Persson, Electronic and optical properties of Cu2 ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107(5), 053710 (2010)CrossRef
Metadaten
Titel
Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells
verfasst von
M. M. S. Sanad
A. M. Elseman
M. M. Elsenety
M. M. Rashad
B. A. Elsayed
Publikationsdatum
27.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01001-z

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science: Materials in Electronics 7/2019 Zur Ausgabe

Neuer Inhalt