Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Facility for Turbulence Generation

verfasst von : Luis Blay Esteban

Erschienen in: Dynamics of Non-Spherical Particles in Turbulence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents an experimental facility designed to generate and control turbulence in a laboratory. This consists of a modified version of the random jet array (RJA) proposed in Bellani and Variano (Exp Fluids 55:1646–1666, 2013, [1]) that allows us to generate homogeneous and anisotropic turbulence. Moreover, this zero-mean flow facility can be used to investigate the temporal decay of turbulence without invoking Taylor’s hypothesis. Thus, the aim of this chapter is twofold: first present the facility designed and second investigate the evolution of anisotropic turbulence over time and evaluate the spatial confinement effect. Once these two questions are answered we will have the tools to examine how different turbulent flows modify the descent style of large inertial particles; and this, at the same time will give us some insight into the particle behaviour inside Aquavitrum’s tank. This chapter is structured as follows; in Sect. 3.1 we introduce zero-mean flow facilities used to generate turbulence and we detail experimental and numerical results on the decay of turbulence with and without confinement effects, in Sect. 3.2 we present the experimental setup and the measurement technique, Sects. 3.3 and 3.4 show the results for stationary and decay turbulence, respectively, and we conclude in Sect. 3.5.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bellani G, Variano EA (2013) Homogeneity and isotropy in a laboratory turbulent flow. Exp Fluids 55:1646–1666CrossRef Bellani G, Variano EA (2013) Homogeneity and isotropy in a laboratory turbulent flow. Exp Fluids 55:1646–1666CrossRef
2.
Zurück zum Zitat Makita H (1991) Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res 8:53–64CrossRef Makita H (1991) Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res 8:53–64CrossRef
3.
Zurück zum Zitat Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368CrossRef Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368CrossRef
4.
Zurück zum Zitat Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-peclet-number grid turbulence. J Fluid Mech 358:135–175CrossRef Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-peclet-number grid turbulence. J Fluid Mech 358:135–175CrossRef
5.
Zurück zum Zitat Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160MathSciNetCrossRef Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160MathSciNetCrossRef
6.
Zurück zum Zitat Larssen JV, Devenport WJ (2011) On the generation of large-scale homogeneous turbulence. Exp Fluids 50:1207–1223CrossRef Larssen JV, Devenport WJ (2011) On the generation of large-scale homogeneous turbulence. Exp Fluids 50:1207–1223CrossRef
7.
Zurück zum Zitat Kistler AL, Vrebalovich T (1966) Grit turbulence at large Reynolds numbers. J Fluid Mech 26:37–47CrossRef Kistler AL, Vrebalovich T (1966) Grit turbulence at large Reynolds numbers. J Fluid Mech 26:37–47CrossRef
8.
Zurück zum Zitat Bodenschatz E, Bewley GP, Nobach H, Sinhuber M, Xu H (2014) Variable density turbulence tunnel facility. Rev Sci Instrum 85(093908):331–368 Bodenschatz E, Bewley GP, Nobach H, Sinhuber M, Xu H (2014) Variable density turbulence tunnel facility. Rev Sci Instrum 85(093908):331–368
9.
Zurück zum Zitat McDougall TJ (1979) Measurements of turbulence in a zero-mean shear mixed layer. J Fluid Mech 94:409–431CrossRef McDougall TJ (1979) Measurements of turbulence in a zero-mean shear mixed layer. J Fluid Mech 94:409–431CrossRef
10.
Zurück zum Zitat De Silva I, Fernando H (1994) Oscillating grids as a source of nearly isotropic turbulence. Phys Fluids 6:2455–2464CrossRef De Silva I, Fernando H (1994) Oscillating grids as a source of nearly isotropic turbulence. Phys Fluids 6:2455–2464CrossRef
11.
Zurück zum Zitat McKenna SP, McGillis WR (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank. Phys Fluids 16:3499–3502CrossRef McKenna SP, McGillis WR (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank. Phys Fluids 16:3499–3502CrossRef
12.
Zurück zum Zitat Marie L, Daviaud F (2004) Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys Fluids 16:457–461CrossRef Marie L, Daviaud F (2004) Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys Fluids 16:457–461CrossRef
13.
Zurück zum Zitat Volk R, Odier P, Pinton JF (2006) Fluctuation of magnetic induction in von Karman swirling flows. Phys Fluids 18:085105MathSciNetCrossRef Volk R, Odier P, Pinton JF (2006) Fluctuation of magnetic induction in von Karman swirling flows. Phys Fluids 18:085105MathSciNetCrossRef
14.
Zurück zum Zitat Blum DB, Bewley GP, Bodenschatz E, Gibert M, Gylfason A, Mydlarski L, Voth GA, Xu H, Yeung PK (2011) Signatures of non-universal large scales in conditional structure functions from various turbulent flows. New J Phys 13(113020)CrossRef Blum DB, Bewley GP, Bodenschatz E, Gibert M, Gylfason A, Mydlarski L, Voth GA, Xu H, Yeung PK (2011) Signatures of non-universal large scales in conditional structure functions from various turbulent flows. New J Phys 13(113020)CrossRef
15.
Zurück zum Zitat Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluids 36:444–454CrossRef Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluids 36:444–454CrossRef
16.
Zurück zum Zitat Webster DR, Brathwaite A, Yen J (2004) A novel laboratory apparatus for simulating isotropic oceanic turbulence at low Reynolds number. Limnol Oceanogr Methods 2:1–12CrossRef Webster DR, Brathwaite A, Yen J (2004) A novel laboratory apparatus for simulating isotropic oceanic turbulence at low Reynolds number. Limnol Oceanogr Methods 2:1–12CrossRef
17.
Zurück zum Zitat Warnaars TA, Hondzo M, Carper MA (2006) A desktop apparatus for studying interactions between microorganisms and small-scale fluid motion. Hydrobiologia 563:431–443CrossRef Warnaars TA, Hondzo M, Carper MA (2006) A desktop apparatus for studying interactions between microorganisms and small-scale fluid motion. Hydrobiologia 563:431–443CrossRef
18.
Zurück zum Zitat Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:125013CrossRef Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:125013CrossRef
19.
Zurück zum Zitat Goepfert C, Marie JL, Chareyron D, Lance M (2010) Characterization fo a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluids 48:809–822CrossRef Goepfert C, Marie JL, Chareyron D, Lance M (2010) Characterization fo a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluids 48:809–822CrossRef
20.
Zurück zum Zitat Chang K, Bewley GP, Bodenschatz E (2012) Experimental study of the influence of anisotropy on the inertial scales of turbulence. J Fluid Mech 692:464–481CrossRef Chang K, Bewley GP, Bodenschatz E (2012) Experimental study of the influence of anisotropy on the inertial scales of turbulence. J Fluid Mech 692:464–481CrossRef
21.
Zurück zum Zitat Zimmermann R, Xu H, Gasteuil Y, Bourgoin M, Volk R, Pinton JF, Bodenschatz E (2010) The Lagrangian exploration module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev Sci Instrum 81(055112)CrossRef Zimmermann R, Xu H, Gasteuil Y, Bourgoin M, Volk R, Pinton JF, Bodenschatz E (2010) The Lagrangian exploration module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev Sci Instrum 81(055112)CrossRef
22.
Zurück zum Zitat Dou Z, Pecenak ZK, Cao L, Woodward SH, Liang Z, Meng H (2016) PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation. Meas Sci Technol 27(3):035305CrossRef Dou Z, Pecenak ZK, Cao L, Woodward SH, Liang Z, Meng H (2016) PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation. Meas Sci Technol 27(3):035305CrossRef
23.
Zurück zum Zitat Variano EA, Bodenschatz E, Cowen EA (2004) A random synthetic jet array driven turbulence tank. Exp Fluids 37:613–615CrossRef Variano EA, Bodenschatz E, Cowen EA (2004) A random synthetic jet array driven turbulence tank. Exp Fluids 37:613–615CrossRef
24.
Zurück zum Zitat Lavertu TM, Mydlarski L, Gaskin SJ (2006) Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J Fluid Mech 612:439–475CrossRef Lavertu TM, Mydlarski L, Gaskin SJ (2006) Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J Fluid Mech 612:439–475CrossRef
25.
Zurück zum Zitat Variano EA, Cowen EA (2008) A random-jet-stirred turbulence tank. J Fluid Mech 604:1–32CrossRef Variano EA, Cowen EA (2008) A random-jet-stirred turbulence tank. J Fluid Mech 604:1–32CrossRef
26.
Zurück zum Zitat Delbos S, Weitbrecht V, Bleninger T, Grand PP, Chassaing E, Lincot D, Kerrec O, Jirka GH (2009) Homogeneous turbulence at an electrodeposition surface induced by randomly firing jet arrays. Exp Fluids 46:1105–1115CrossRef Delbos S, Weitbrecht V, Bleninger T, Grand PP, Chassaing E, Lincot D, Kerrec O, Jirka GH (2009) Homogeneous turbulence at an electrodeposition surface induced by randomly firing jet arrays. Exp Fluids 46:1105–1115CrossRef
27.
Zurück zum Zitat Khorsandi B, Gaskin S, Mydlarski L (2013) Effect of background turbulence on an axisymmetric turbulent jet. J Fluid Mech 736:250–286CrossRef Khorsandi B, Gaskin S, Mydlarski L (2013) Effect of background turbulence on an axisymmetric turbulent jet. J Fluid Mech 736:250–286CrossRef
28.
Zurück zum Zitat Carter D, Petersen A, Amili O, Coletti F (2016) Generating and controlling homogeneous air turbulence using random jet arrays. Exp Fluids 57:189CrossRef Carter D, Petersen A, Amili O, Coletti F (2016) Generating and controlling homogeneous air turbulence using random jet arrays. Exp Fluids 57:189CrossRef
29.
Zurück zum Zitat Von Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRef Von Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRef
30.
Zurück zum Zitat Compte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech 62:115–143 Compte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech 62:115–143
32.
Zurück zum Zitat Uberoi MS, Wallis S (1967) Effect of grid geometry on turbulence decay. Phys Fluids 10:1216–1224CrossRef Uberoi MS, Wallis S (1967) Effect of grid geometry on turbulence decay. Phys Fluids 10:1216–1224CrossRef
33.
Zurück zum Zitat Ling SC, Wang CA (1972) Decay of isotropic turbulence generated by a mechanically agitated grid. Phys Fluids 15:1363–1369CrossRef Ling SC, Wang CA (1972) Decay of isotropic turbulence generated by a mechanically agitated grid. Phys Fluids 15:1363–1369CrossRef
34.
Zurück zum Zitat el Hak MG, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62:115–143CrossRef el Hak MG, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62:115–143CrossRef
35.
Zurück zum Zitat Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond 164:421–444CrossRef Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond 164:421–444CrossRef
36.
Zurück zum Zitat Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420CrossRef Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420CrossRef
37.
Zurück zum Zitat Krogstad PA, Davidson PA (2011) Freely decaying, homogeneous turbulence generated by multi-scale grids. J Fluid Mech 680:417–434CrossRef Krogstad PA, Davidson PA (2011) Freely decaying, homogeneous turbulence generated by multi-scale grids. J Fluid Mech 680:417–434CrossRef
38.
Zurück zum Zitat Valente PC, Vassilicos JC (2012) Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys Lett A 376:510–514CrossRef Valente PC, Vassilicos JC (2012) Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys Lett A 376:510–514CrossRef
39.
Zurück zum Zitat Hearst RJ, Lavoie P (2014) Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech 741:567–584CrossRef Hearst RJ, Lavoie P (2014) Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech 741:567–584CrossRef
40.
Zurück zum Zitat Valente PC, Vassilicos JC (2011) The decay of turbulence generated by a class of multiscale grids. J Fluid Mech 687:300–340CrossRef Valente PC, Vassilicos JC (2011) The decay of turbulence generated by a class of multiscale grids. J Fluid Mech 687:300–340CrossRef
41.
Zurück zum Zitat Huang MJ, Leonard A (1994) Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys Fluids 6:3765–3775CrossRef Huang MJ, Leonard A (1994) Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys Fluids 6:3765–3775CrossRef
42.
Zurück zum Zitat de Bruyn Kops SM, Riley JJ (1998) Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys Fluids 10:2125–2127CrossRef de Bruyn Kops SM, Riley JJ (1998) Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys Fluids 10:2125–2127CrossRef
43.
Zurück zum Zitat Wray A (1998) Decaying isotropic turbulence. Technical report, AGARD advisory report Wray A (1998) Decaying isotropic turbulence. Technical report, AGARD advisory report
44.
Zurück zum Zitat Antonia RA, Orlandi P (2004) Similarity of decaying isotropic turbulence with a passive scalar. J Fluid Mech 505:123–151CrossRef Antonia RA, Orlandi P (2004) Similarity of decaying isotropic turbulence with a passive scalar. J Fluid Mech 505:123–151CrossRef
45.
Zurück zum Zitat Burattini P, Lavoie P, Agrawal A, Djenidi L, Antonia RA (2006) On the power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys Rev E 73:066304CrossRef Burattini P, Lavoie P, Agrawal A, Djenidi L, Antonia RA (2006) On the power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys Rev E 73:066304CrossRef
46.
Zurück zum Zitat Goto S, Vassilicos JC (2016) Unsteady turbulence cascades. Phys Rev E 94:053108CrossRef Goto S, Vassilicos JC (2016) Unsteady turbulence cascades. Phys Rev E 94:053108CrossRef
47.
Zurück zum Zitat Taylor GI (1935) Statistical theory of turbulence. Proc R Soc A 151:421–444CrossRef Taylor GI (1935) Statistical theory of turbulence. Proc R Soc A 151:421–444CrossRef
48.
Zurück zum Zitat Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds. C R Acad Sci URSS 30:301MathSciNet Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds. C R Acad Sci URSS 30:301MathSciNet
49.
Zurück zum Zitat Meldi M (2016) The signature of initial production mechanisms in isotropic turbulence decay. Phys Fluids 28:035105CrossRef Meldi M (2016) The signature of initial production mechanisms in isotropic turbulence decay. Phys Fluids 28:035105CrossRef
50.
Zurück zum Zitat Hurst DJ, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19:035103CrossRef Hurst DJ, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19:035103CrossRef
51.
Zurück zum Zitat Mazellier N, Vassilicos JC (2010) Turbulence without Richardson-Kolmogorov cascade. Phys Fluids 22:075101CrossRef Mazellier N, Vassilicos JC (2010) Turbulence without Richardson-Kolmogorov cascade. Phys Fluids 22:075101CrossRef
52.
Zurück zum Zitat Meldi M, Lejemble H, Sagaut P (2014) On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J Fluid Mech 756:816–843MathSciNetCrossRef Meldi M, Lejemble H, Sagaut P (2014) On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J Fluid Mech 756:816–843MathSciNetCrossRef
53.
Zurück zum Zitat Skrbek L, Stalp SR (2000) On the decay of homogeneous isotropic turbulence. Phys Rev Lett 12:1997–2019MATH Skrbek L, Stalp SR (2000) On the decay of homogeneous isotropic turbulence. Phys Rev Lett 12:1997–2019MATH
55.
Zurück zum Zitat Biferale L, Boffetta G, Celani A, Lanotte A, Toschi F, Vergassola M (2003) The decay of homogeneous anisotropic turbulence. Phys Fluids 15:2105–2112MathSciNetCrossRef Biferale L, Boffetta G, Celani A, Lanotte A, Toschi F, Vergassola M (2003) The decay of homogeneous anisotropic turbulence. Phys Fluids 15:2105–2112MathSciNetCrossRef
56.
Zurück zum Zitat Hellström LHO, Zlatinov MB, Cao G, Smits AJ (2013) Turbulent pipe flow downstream of a 90 bend. J Fluid Mech 735(R7):1–12MATH Hellström LHO, Zlatinov MB, Cao G, Smits AJ (2013) Turbulent pipe flow downstream of a 90 bend. J Fluid Mech 735(R7):1–12MATH
57.
Zurück zum Zitat Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge
58.
Zurück zum Zitat Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42:923–939CrossRef Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42:923–939CrossRef
59.
Zurück zum Zitat Alvarado AP, Mydlarski L, Gaskin S (2016) Effect of the driving algorithm on the turbulence generated by a random jet array. Exp Fluids 57:20–32CrossRef Alvarado AP, Mydlarski L, Gaskin S (2016) Effect of the driving algorithm on the turbulence generated by a random jet array. Exp Fluids 57:20–32CrossRef
60.
Zurück zum Zitat George WK, Hussein HJ (1991) Locally axisymmetric turbulence. J Fluid Mech 223:1–23CrossRef George WK, Hussein HJ (1991) Locally axisymmetric turbulence. J Fluid Mech 223:1–23CrossRef
61.
Zurück zum Zitat Saarenrinne P, Piirto M (2000) Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp Fluids 29:300–307CrossRef Saarenrinne P, Piirto M (2000) Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp Fluids 29:300–307CrossRef
62.
Zurück zum Zitat Tanaka T, Eaton JK (2007) A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp Fluids 42:893–902CrossRef Tanaka T, Eaton JK (2007) A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp Fluids 42:893–902CrossRef
63.
Zurück zum Zitat de Jong J, Cao L, Woodward SH, Salazar JPLC, Collins LR, Meng H (2009) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 46:499–515CrossRef de Jong J, Cao L, Woodward SH, Salazar JPLC, Collins LR, Meng H (2009) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 46:499–515CrossRef
64.
Zurück zum Zitat Buxton ORH, Laizet S, Ganapathisubramani B (2011) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 51:1417–1437CrossRef Buxton ORH, Laizet S, Ganapathisubramani B (2011) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 51:1417–1437CrossRef
65.
Zurück zum Zitat Antonia RA, Satyaprakash BR, Hussain AKMF (1982) Statistics of fine-scale velocity in turbulent plane and circular jets. J Fluid Mech 119:55–89CrossRef Antonia RA, Satyaprakash BR, Hussain AKMF (1982) Statistics of fine-scale velocity in turbulent plane and circular jets. J Fluid Mech 119:55–89CrossRef
66.
Zurück zum Zitat Sreenivasan KR (1984) On the scaling of the energy dissipation rate. Phys Fluids 27:1048CrossRef Sreenivasan KR (1984) On the scaling of the energy dissipation rate. Phys Fluids 27:1048CrossRef
67.
68.
Zurück zum Zitat Burattini P, Lavoie P, Antonia RA (2005) On the normalized turbulent energy dissipation rate. Phys Fluids 17:098103MathSciNetCrossRef Burattini P, Lavoie P, Antonia RA (2005) On the normalized turbulent energy dissipation rate. Phys Fluids 17:098103MathSciNetCrossRef
69.
Zurück zum Zitat Meldi M, Sagaut P (2017) Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay. J Fluid Mech 818:697–715MathSciNetCrossRef Meldi M, Sagaut P (2017) Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay. J Fluid Mech 818:697–715MathSciNetCrossRef
71.
Zurück zum Zitat Meldi M, Sagaut P (2014) On non-self-similar regimes in homogeneous isotropic turbulence decay. J Fluid Mech 711:364–393MathSciNetCrossRef Meldi M, Sagaut P (2014) On non-self-similar regimes in homogeneous isotropic turbulence decay. J Fluid Mech 711:364–393MathSciNetCrossRef
72.
Zurück zum Zitat Perot JB (2011) Determination of the decay exponent in mechanically stirred isotropic turbulence. AIP Adv 1:022104CrossRef Perot JB (2011) Determination of the decay exponent in mechanically stirred isotropic turbulence. AIP Adv 1:022104CrossRef
73.
Zurück zum Zitat Meldi M, Sagaut P, Lucor D (2011) A stochastic view of isotropic turbulence decay. J Fluid Mech 668:351–362CrossRef Meldi M, Sagaut P, Lucor D (2011) A stochastic view of isotropic turbulence decay. J Fluid Mech 668:351–362CrossRef
Metadaten
Titel
Facility for Turbulence Generation
verfasst von
Luis Blay Esteban
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-28136-6_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.