Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Failure Modes and Mechanisms

verfasst von : Alhussein Albarbar, Mohmad Alrweq

Erschienen in: Proton Exchange Membrane Fuel Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, common failure modes in PEM fuel cells are outlined with a focus on repairable failures. Causes of repairable failures such as transient faults including flooding and dehydration of membranes are explained in detail.
In addition to that, irreparable failures, such as membrane degradation, absence of catalyst and existence of carbon monoxide, are also briefly discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gittleman, S., Coms, F., & Lai, H. (2011). Membrane durability: Physical and chemical degradation. Polymer Electrolyte Fuel Cell Degradation, 15–88. ISBN 978-0-12-386936-4. Gittleman, S., Coms, F., & Lai, H. (2011). Membrane durability: Physical and chemical degradation. Polymer Electrolyte Fuel Cell Degradation, 15–88. ISBN 978-0-12-386936-4.
3.
Zurück zum Zitat Ercolino, G., Ashraf, M. A., Specchia, V., & Specchia, S. (2015). Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation. Applied Energy, 143, 138–153.CrossRef Ercolino, G., Ashraf, M. A., Specchia, V., & Specchia, S. (2015). Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation. Applied Energy, 143, 138–153.CrossRef
4.
Zurück zum Zitat De Beer, C., Barendse, P. S., Pillay, P., Bullecks, B., & Rengaswamy, R. (2015). Electrical circuit analysis of CO poisoning in high-temperature PEMFC for fault diagnostics and mitigation. IEEE Transactions on Industry Applications, 51(1), 619–630.CrossRef De Beer, C., Barendse, P. S., Pillay, P., Bullecks, B., & Rengaswamy, R. (2015). Electrical circuit analysis of CO poisoning in high-temperature PEMFC for fault diagnostics and mitigation. IEEE Transactions on Industry Applications, 51(1), 619–630.CrossRef
5.
Zurück zum Zitat Park, S., Lee, J. W., & Popov, B. N. (2012). A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 37(7), 5850–5865.CrossRef Park, S., Lee, J. W., & Popov, B. N. (2012). A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 37(7), 5850–5865.CrossRef
6.
Zurück zum Zitat Li, A., & Chan, S. H. (2013). Understanding the role of cathode structure and property on water management and electrochemical performance of a PEM fuel cell. International Journal of Hydrogen Energy, 38(27), 11988–11995.CrossRef Li, A., & Chan, S. H. (2013). Understanding the role of cathode structure and property on water management and electrochemical performance of a PEM fuel cell. International Journal of Hydrogen Energy, 38(27), 11988–11995.CrossRef
7.
Zurück zum Zitat Chen, L., Luan, H. B., He, Y. L., & Tao, W. Q. (2012). Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. International Journal of Thermal Sciences, 51, 132–144.CrossRef Chen, L., Luan, H. B., He, Y. L., & Tao, W. Q. (2012). Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. International Journal of Thermal Sciences, 51, 132–144.CrossRef
8.
Zurück zum Zitat Speder, J., Zana, A., Spanos, I., Kirkensgaard, J. J., Mortensen, K., Hanzlik, M., & Arenz, M. (2014). Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts–the influence of the platinum to carbon ratio on the degradation rate. Journal of Power Sources, 261, 14–22.CrossRef Speder, J., Zana, A., Spanos, I., Kirkensgaard, J. J., Mortensen, K., Hanzlik, M., & Arenz, M. (2014). Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts–the influence of the platinum to carbon ratio on the degradation rate. Journal of Power Sources, 261, 14–22.CrossRef
9.
Zurück zum Zitat Therdthianwong, A., Saenwiset, P., & Therdthianwong, S. (2012). Cathode catalyst layer design for proton exchange membrane fuel cells. Fuel, 91(1), 192–199.CrossRef Therdthianwong, A., Saenwiset, P., & Therdthianwong, S. (2012). Cathode catalyst layer design for proton exchange membrane fuel cells. Fuel, 91(1), 192–199.CrossRef
10.
Zurück zum Zitat Kim, M., Jung, N., Eom, K., Yoo, S. J., Kim, J. Y., Jang, J. H., Kim, H. J., Hong, B. K., & Cho, E. (2014). Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. Journal of Power Sources, 266, 332–340.CrossRef Kim, M., Jung, N., Eom, K., Yoo, S. J., Kim, J. Y., Jang, J. H., Kim, H. J., Hong, B. K., & Cho, E. (2014). Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. Journal of Power Sources, 266, 332–340.CrossRef
11.
Zurück zum Zitat Yu, J. R., Matsuura, T., Yoshikawa, Y., Islam, M. N., & Hori, M. (2005). In situ analysis of performance degradation of a PEM FUEL CELL under non-saturated humidification. Electrochemist. Solid-State Lett, 8, 156–158.CrossRef Yu, J. R., Matsuura, T., Yoshikawa, Y., Islam, M. N., & Hori, M. (2005). In situ analysis of performance degradation of a PEM FUEL CELL under non-saturated humidification. Electrochemist. Solid-State Lett, 8, 156–158.CrossRef
12.
Zurück zum Zitat Tian, G., Wasterlain, S., Endichi, I., Candusso, D., Harel, F., François, X., Péra, M. C., Hissel, D., & Kauffmann, J. M. (2008). Diagnosis methods dedicated to the localisation of failed cells within PEM FUEL CELL stacks. Journal of Power Sources, 182(2), 449–461.CrossRef Tian, G., Wasterlain, S., Endichi, I., Candusso, D., Harel, F., François, X., Péra, M. C., Hissel, D., & Kauffmann, J. M. (2008). Diagnosis methods dedicated to the localisation of failed cells within PEM FUEL CELL stacks. Journal of Power Sources, 182(2), 449–461.CrossRef
13.
Zurück zum Zitat Lee, D., & Bae, J. (2012). Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEM FUEL CELL. International Journal of Hydrogen Energy, 37(1), 422–435.MathSciNetCrossRef Lee, D., & Bae, J. (2012). Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEM FUEL CELL. International Journal of Hydrogen Energy, 37(1), 422–435.MathSciNetCrossRef
14.
Zurück zum Zitat Srouji, A. K., Zheng, L. J., Dross, R., Turhan, A., & Mench, M. M. (2013). Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field. Journal of Power Sources, 239, 433–442.CrossRef Srouji, A. K., Zheng, L. J., Dross, R., Turhan, A., & Mench, M. M. (2013). Ultra-high current density water management in polymer electrolyte fuel cell with porous metallic flow field. Journal of Power Sources, 239, 433–442.CrossRef
15.
Zurück zum Zitat Karthikeyan, P., Li, H. C., Lipscomb, G., Neelakrishnan, S., Abby, J. G., & Anand, R. (2012). Experimental investigation of the water impact on performance of proton exchange membrane fuel cells (PEMFC) with porous and non-porous flow channels. In ASME 2012 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, 6, 781–788. Karthikeyan, P., Li, H. C., Lipscomb, G., Neelakrishnan, S., Abby, J. G., & Anand, R. (2012). Experimental investigation of the water impact on performance of proton exchange membrane fuel cells (PEMFC) with porous and non-porous flow channels. In ASME 2012 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, 6, 781–788.
16.
Zurück zum Zitat Zhang, J. B., Kramer, D., Shimoi, R., Ono, Y., Lehmann, E., Wokaun, A., Shinohara, K., & Scherer, G. G. (2006). In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part B. Material variations. Electrochimica Acta, 51, 2715–2727.CrossRef Zhang, J. B., Kramer, D., Shimoi, R., Ono, Y., Lehmann, E., Wokaun, A., Shinohara, K., & Scherer, G. G. (2006). In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part B. Material variations. Electrochimica Acta, 51, 2715–2727.CrossRef
17.
Zurück zum Zitat Song, J. M., Cha, S. Y., & Lee, W. M. (2001). Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. Journal of Power Sources, 94(1), 78–84.CrossRef Song, J. M., Cha, S. Y., & Lee, W. M. (2001). Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. Journal of Power Sources, 94(1), 78–84.CrossRef
18.
Zurück zum Zitat Jiao, K., & Li, X. (2011). Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 37(3), 221–291.MathSciNetCrossRef Jiao, K., & Li, X. (2011). Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 37(3), 221–291.MathSciNetCrossRef
19.
Zurück zum Zitat Hou, J., Yu, H., Zhang, S., Sun, S., Wang, H., Yi, B., & Ming, P. (2006). Analysis of PEMFC freeze degradation at − 20 C after gas purging. Journal of Power Sources, 162(1), 513–520.CrossRef Hou, J., Yu, H., Zhang, S., Sun, S., Wang, H., Yi, B., & Ming, P. (2006). Analysis of PEMFC freeze degradation at − 20 C after gas purging. Journal of Power Sources, 162(1), 513–520.CrossRef
20.
Zurück zum Zitat Ge, S., & Wang, C. Y. (2007). Characteristics of sub-zero start-up and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell. Electrochemical Acta, 52(14), 4825–4835.CrossRef Ge, S., & Wang, C. Y. (2007). Characteristics of sub-zero start-up and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell. Electrochemical Acta, 52(14), 4825–4835.CrossRef
21.
Zurück zum Zitat Theodorakakos, A., Ous, T., Gavaises, M., Nouri, J. M., Nikolopoulos, N., & Yanagihara, H. (2006). Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Journal of Colloid and Interface Science, 300(2), 673–687.CrossRef Theodorakakos, A., Ous, T., Gavaises, M., Nouri, J. M., Nikolopoulos, N., & Yanagihara, H. (2006). Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Journal of Colloid and Interface Science, 300(2), 673–687.CrossRef
22.
Zurück zum Zitat Gebel, G., Diat, O., Escribano, S., & Mosdale, R. (2008). Water profile determination in a running PEMFC by small-angle neutron scattering. Journal of Power Sources, 179(1), 132–139.CrossRef Gebel, G., Diat, O., Escribano, S., & Mosdale, R. (2008). Water profile determination in a running PEMFC by small-angle neutron scattering. Journal of Power Sources, 179(1), 132–139.CrossRef
23.
Zurück zum Zitat Gerard, M., Poirot-Crouvezier, J. P., Hissel, D., & Pera, M. C. (2010). Oxygen starvation analysis during air feeding faults in PEMFC. International Journal of Hydrogen Energy, 35(22), 12295–12307.CrossRef Gerard, M., Poirot-Crouvezier, J. P., Hissel, D., & Pera, M. C. (2010). Oxygen starvation analysis during air feeding faults in PEMFC. International Journal of Hydrogen Energy, 35(22), 12295–12307.CrossRef
24.
Zurück zum Zitat Liu, Z., Yang, L., Mao, Z., Zhuge, W., Zhang, Y., & Wang, L. (2006). Behaviour of PEMFC in starvation. Journal of Power Sources, 157(1), 166–176.CrossRef Liu, Z., Yang, L., Mao, Z., Zhuge, W., Zhang, Y., & Wang, L. (2006). Behaviour of PEMFC in starvation. Journal of Power Sources, 157(1), 166–176.CrossRef
25.
Zurück zum Zitat Dou, M., Hou, M., Liang, D., Shen, Q., Zhang, H., Lu, W., Shao, Z., & Yi, B. (2011). Behaviour of proton exchange membrane fuel cells under oxidant starvation. Journal of Power Sources, 196(5), 2759–2762.CrossRef Dou, M., Hou, M., Liang, D., Shen, Q., Zhang, H., Lu, W., Shao, Z., & Yi, B. (2011). Behaviour of proton exchange membrane fuel cells under oxidant starvation. Journal of Power Sources, 196(5), 2759–2762.CrossRef
26.
Zurück zum Zitat Grigoriev, S. A., Shtatniy, I. G., Millet, P., Porembsky, V. I., & Fateev, V. N. (2011). Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology. International Journal of Hydrogen Energy, 36(6), 4148–4155.CrossRef Grigoriev, S. A., Shtatniy, I. G., Millet, P., Porembsky, V. I., & Fateev, V. N. (2011). Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology. International Journal of Hydrogen Energy, 36(6), 4148–4155.CrossRef
27.
Zurück zum Zitat Miao, Z., Yu, H., Song, W., Hao, L., Shao, Z., Shen, Q., Hou, J., & Yi, B. (2010). Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers. International Journal of Hydrogen Energy, 35(11), 5552–5557.CrossRef Miao, Z., Yu, H., Song, W., Hao, L., Shao, Z., Shen, Q., Hou, J., & Yi, B. (2010). Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers. International Journal of Hydrogen Energy, 35(11), 5552–5557.CrossRef
28.
Zurück zum Zitat Escobet, T., Feroldi, D., De Lira, S., Puig, V., Quevedo, J., Riera, J., & Serra, M. (2009). Model-based fault diagnosis in PEM fuel cell systems. Journal of Power Sources, 192(1), 216–223.CrossRef Escobet, T., Feroldi, D., De Lira, S., Puig, V., Quevedo, J., Riera, J., & Serra, M. (2009). Model-based fault diagnosis in PEM fuel cell systems. Journal of Power Sources, 192(1), 216–223.CrossRef
29.
Zurück zum Zitat Pukrushpan, J. T., Stefanopoulou, A. G., & Peng, H. (2004). Control of fuel cell breathing. IEEE Control Systems, 24(2), 30–46.MathSciNetCrossRef Pukrushpan, J. T., Stefanopoulou, A. G., & Peng, H. (2004). Control of fuel cell breathing. IEEE Control Systems, 24(2), 30–46.MathSciNetCrossRef
30.
Zurück zum Zitat Lechartier, E., Laffly, E., Péra, M. C., Gouriveau, R., Hissel, D., & Zerhouni, N. (2015). Proton exchange membrane fuel cell behavioural model suitable for prognostics. International Journal of Hydrogen Energy, 40(26), 8384–8397.CrossRef Lechartier, E., Laffly, E., Péra, M. C., Gouriveau, R., Hissel, D., & Zerhouni, N. (2015). Proton exchange membrane fuel cell behavioural model suitable for prognostics. International Journal of Hydrogen Energy, 40(26), 8384–8397.CrossRef
31.
Zurück zum Zitat Yu, X., & Ye, S. (2007). Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources, 172(1), 145–154.MathSciNetCrossRef Yu, X., & Ye, S. (2007). Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources, 172(1), 145–154.MathSciNetCrossRef
32.
Zurück zum Zitat Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., Shi, Z., Song, D., Wang, H., Wilkinson, D. P., & Liu, Z. S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872–891.CrossRef Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., Shi, Z., Song, D., Wang, H., Wilkinson, D. P., & Liu, Z. S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872–891.CrossRef
33.
Zurück zum Zitat Kim, S. K., Choi, S. W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J. C. (2012). Cross-linked benzoxazine–benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature. Macromolecules, 45(3), 1438–1446.CrossRef Kim, S. K., Choi, S. W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J. C. (2012). Cross-linked benzoxazine–benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature. Macromolecules, 45(3), 1438–1446.CrossRef
Metadaten
Titel
Failure Modes and Mechanisms
verfasst von
Alhussein Albarbar
Mohmad Alrweq
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-70727-3_4