Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Mathematical Modelling and Numerical Simulation

verfasst von : Alhussein Albarbar, Mohmad Alrweq

Erschienen in: Proton Exchange Membrane Fuel Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, analytical models and effects of operation parameters on the performance of PEM fuel cells are presented. This was carried out taking account of semi-empirical, one-, two- and three-dimensional modelling methods. Critical analysis of the performance of each modelling methods is included, and the effectiveness of those algorithms is experimentally verified using scaled PEM fuel cell experimental set-up.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modelling of PEM fuel cells II. Model predictions with liquid water transport. Journal of the Electrochemical Society, 150(11), A1510–A1517.CrossRef Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modelling of PEM fuel cells II. Model predictions with liquid water transport. Journal of the Electrochemical Society, 150(11), A1510–A1517.CrossRef
2.
Zurück zum Zitat Pasaogullari, U., & Wang, C. Y. (2005). Two-phase modelling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 152(2), A380–A390.CrossRef Pasaogullari, U., & Wang, C. Y. (2005). Two-phase modelling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 152(2), A380–A390.CrossRef
3.
Zurück zum Zitat Spiegel, C. (2011). PEM fuel cell modeling and simulation using MATLAB. Burlington USA: Academic press. ISBN: 978-0-12-374259-9. Spiegel, C. (2011). PEM fuel cell modeling and simulation using MATLAB. Burlington USA: Academic press. ISBN: 978-0-12-374259-9.
5.
Zurück zum Zitat Milewski, J., Świrski, K., Santarelli, M. and Leone, P., 2011. Advanced methods of solid oxide fuel cell modeling. Springer Science & Business Media.CrossRef Milewski, J., Świrski, K., Santarelli, M. and Leone, P., 2011. Advanced methods of solid oxide fuel cell modeling. Springer Science & Business Media.CrossRef
6.
Zurück zum Zitat Al-Baghdadi, M. A. (2010). CFD modeling and analysis of different novel designs of air-breathing PEM fuel cells. New York: Nova Science Publishers. Al-Baghdadi, M. A. (2010). CFD modeling and analysis of different novel designs of air-breathing PEM fuel cells. New York: Nova Science Publishers.
7.
Zurück zum Zitat Bavarian, M., Soroush, M., Kevrekidis, I. G., & Benziger, J. B. (2010). Mathematical modelling, steady-state and dynamic behaviour, and control of fuel cells: A review†. Industrial & Engineering Chemistry Research, 49(17), 7922–7950.CrossRef Bavarian, M., Soroush, M., Kevrekidis, I. G., & Benziger, J. B. (2010). Mathematical modelling, steady-state and dynamic behaviour, and control of fuel cells: A review†. Industrial & Engineering Chemistry Research, 49(17), 7922–7950.CrossRef
8.
Zurück zum Zitat Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modelling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.CrossRef Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modelling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.CrossRef
9.
Zurück zum Zitat Vasile, N. S., Doherty, R., Videla, A. H. M., & Specchia, S. (2016). 3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells. Applied Energy, 175, 435–450.CrossRef Vasile, N. S., Doherty, R., Videla, A. H. M., & Specchia, S. (2016). 3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells. Applied Energy, 175, 435–450.CrossRef
10.
Zurück zum Zitat Al-Masri, A., Peksen, M., Blum, L., & Stolten, D. (2014). A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy, 135, 539–547.CrossRef Al-Masri, A., Peksen, M., Blum, L., & Stolten, D. (2014). A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy, 135, 539–547.CrossRef
11.
Zurück zum Zitat Abdollahzadeh, M., Pascoa, J. C., Ranjbar, A. A., & Esmaili, Q. (2014). Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling. Energy, 68, 478–494.CrossRef Abdollahzadeh, M., Pascoa, J. C., Ranjbar, A. A., & Esmaili, Q. (2014). Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling. Energy, 68, 478–494.CrossRef
12.
Zurück zum Zitat Siegel, C. (2008). Review of computational heat and mass transfer modelling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 33(9), 1331–1352.CrossRef Siegel, C. (2008). Review of computational heat and mass transfer modelling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 33(9), 1331–1352.CrossRef
13.
Zurück zum Zitat Liu, Y., Lehnert, W., Janßen, H., Samsun, R. C., & Stolten, D. (2016). A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEM FUEL CELL)-based auxiliary power units for diesel-powered road vehicles. Journal of Power Sources, 311, 91–102.CrossRef Liu, Y., Lehnert, W., Janßen, H., Samsun, R. C., & Stolten, D. (2016). A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEM FUEL CELL)-based auxiliary power units for diesel-powered road vehicles. Journal of Power Sources, 311, 91–102.CrossRef
14.
Zurück zum Zitat Hutzenlaub, T., Becker, J., Zengerle, R., & Thiele, S. (2013). Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a proton exchange membrane fuel cell. Journal of Power Sources, 227, 260–266.CrossRef Hutzenlaub, T., Becker, J., Zengerle, R., & Thiele, S. (2013). Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a proton exchange membrane fuel cell. Journal of Power Sources, 227, 260–266.CrossRef
15.
Zurück zum Zitat Carton, J. G., Lawlor, V., Olabi, A. G., Hochenauer, C., & Zauner, G. (2012). Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels. Energy, 39(1), 63–73.CrossRef Carton, J. G., Lawlor, V., Olabi, A. G., Hochenauer, C., & Zauner, G. (2012). Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels. Energy, 39(1), 63–73.CrossRef
16.
Zurück zum Zitat Wang, X., & Van Nguyen, T. (2010). Modelling the effects of the microporous layer on the net water transport rate across the membrane in a PEM fuel cell. Journal of the Electrochemical Society, 157(4), B496–B505.CrossRef Wang, X., & Van Nguyen, T. (2010). Modelling the effects of the microporous layer on the net water transport rate across the membrane in a PEM fuel cell. Journal of the Electrochemical Society, 157(4), B496–B505.CrossRef
17.
Zurück zum Zitat Liu, F., Lu, G., & Wang, C. Y. (2007). Water transport coefficient distribution through the membrane in a polymer electrolyte fuel cell. Journal of Membrane Science, 287(1), 126–131.CrossRef Liu, F., Lu, G., & Wang, C. Y. (2007). Water transport coefficient distribution through the membrane in a polymer electrolyte fuel cell. Journal of Membrane Science, 287(1), 126–131.CrossRef
18.
Zurück zum Zitat Das, P. K., Li, X., & Liu, Z. S. (2010). Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy, 35(6), 2403–2416.CrossRef Das, P. K., Li, X., & Liu, Z. S. (2010). Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy, 35(6), 2403–2416.CrossRef
19.
Zurück zum Zitat Lu, Z., Rath, C., Zhang, G., & Kandlikar, S. G. (2011). Water management studies in PEM fuel cells, part IV: Effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. International Journal of Hydrogen Energy, 36(16), 9864–9875.CrossRef Lu, Z., Rath, C., Zhang, G., & Kandlikar, S. G. (2011). Water management studies in PEM fuel cells, part IV: Effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. International Journal of Hydrogen Energy, 36(16), 9864–9875.CrossRef
20.
Zurück zum Zitat Grimm, M., See, E. J., & Kandlikar, S. G. (2012). Modelling gas flow in PEM FUEL CELL channels: Part I–flow pattern transitions and pressure drop in a simulated ex situ channel with uniform water injection through the GDL. International Journal of Hydrogen Energy, 37(17), 12489–12503.CrossRef Grimm, M., See, E. J., & Kandlikar, S. G. (2012). Modelling gas flow in PEM FUEL CELL channels: Part I–flow pattern transitions and pressure drop in a simulated ex situ channel with uniform water injection through the GDL. International Journal of Hydrogen Energy, 37(17), 12489–12503.CrossRef
21.
Zurück zum Zitat Gao, F., Blunier, B., Simoes, M. G., & Miraoui, A. (2011). PEM fuel cell stack modelling for real-time emulation in hardware-in-the-loop applications. IEEE Transactions on Energy Conversion, 26(1), 184–194.CrossRef Gao, F., Blunier, B., Simoes, M. G., & Miraoui, A. (2011). PEM fuel cell stack modelling for real-time emulation in hardware-in-the-loop applications. IEEE Transactions on Energy Conversion, 26(1), 184–194.CrossRef
22.
Zurück zum Zitat Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.CrossRef Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.CrossRef
23.
Zurück zum Zitat Lobato, J., Cañizares, P., Rodrigo, M. A., Pinar, F. J., Mena, E., & Úbeda, D. (2010). Three-dimensional model of a 50 cm 2 high temperature PEM fuel cell. Study of the flow channel geometry influence. International Journal of Hydrogen Energy, 35(11), 5510–5520.CrossRef Lobato, J., Cañizares, P., Rodrigo, M. A., Pinar, F. J., Mena, E., & Úbeda, D. (2010). Three-dimensional model of a 50 cm 2 high temperature PEM fuel cell. Study of the flow channel geometry influence. International Journal of Hydrogen Energy, 35(11), 5510–5520.CrossRef
Metadaten
Titel
Mathematical Modelling and Numerical Simulation
verfasst von
Alhussein Albarbar
Mohmad Alrweq
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-70727-3_5