Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2023

21.10.2023 | ORIGINAL ARTICLE

Fast and accurate reduced-order modeling of a MOOSE-based additive manufacturing model with operator learning

verfasst von: Mahmoud Yaseen, Dewen Yushu, Peter German, Xu Wu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One predominant challenge in additive manufacturing (AM) is to achieve specific material properties by manipulating manufacturing process parameters during the runtime. Such manipulation tends to increase the computational load imposed on existing simulation tools employed in AM. The goal of the present work is to construct a fast and accurate reduced-order model (ROM) for an AM model developed within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, ultimately reducing the time/cost of AM control and optimization processes. Our adoption of the operator learning (OL) approach enabled us to learn a family of differential equations produced by altering process variables in the laser’s Gaussian point heat source. More specifically, we used the Fourier neural operator (FNO) and deep operator network (DeepONet) to develop ROMs for time-dependent responses. Furthermore, we benchmarked the performance of these OL methods against a conventional deep neural network (DNN)-based ROM. Ultimately, we found that OL methods offer comparable performance and, in terms of accuracy and generalizability, even outperform DNN at predicting scalar model responses. The DNN-based ROM afforded the fastest training time. Furthermore, all the ROMs were faster than the original MOOSE model yet still provided accurate predictions. FNO had a smaller mean prediction error than DeepONet, with a larger variance for time-dependent responses. Unlike DNN, both FNO and DeepONet were able to simulate time series data without the need for dimensionality reduction techniques. The present work can help facilitate the AM optimization process by enabling faster execution of simulation tools while still preserving evaluation accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15:1–21CrossRef Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15:1–21CrossRef
2.
Zurück zum Zitat Free Z, Hernandez M, Mashal M, Mondal K (2021) A review on advanced manufacturing for hydrogen storage applications. Energies 14(24):8513CrossRef Free Z, Hernandez M, Mashal M, Mondal K (2021) A review on advanced manufacturing for hydrogen storage applications. Energies 14(24):8513CrossRef
3.
Zurück zum Zitat Kestilä A, Nordling K, Miikkulainen V, Kaipio M, Tikka T, Salmi M, Auer A, Leskelä M, Ritala M (2018) Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidics. Additive Manuf 22:31–37CrossRef Kestilä A, Nordling K, Miikkulainen V, Kaipio M, Tikka T, Salmi M, Auer A, Leskelä M, Ritala M (2018) Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidics. Additive Manuf 22:31–37CrossRef
4.
Zurück zum Zitat Era IZ, Grandhi M, Liu Z (2022) Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning. Int J Adv Manuf Technol 121(3–4):2445–2459CrossRef Era IZ, Grandhi M, Liu Z (2022) Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning. Int J Adv Manuf Technol 121(3–4):2445–2459CrossRef
5.
Zurück zum Zitat Yaseen M, Wu X (2023) Quantification of deep neural network prediction uncertainties for VVUQ of machine learning models. Nucl Sci Eng 197(5):947–966CrossRef Yaseen M, Wu X (2023) Quantification of deep neural network prediction uncertainties for VVUQ of machine learning models. Nucl Sci Eng 197(5):947–966CrossRef
6.
Zurück zum Zitat Xiao D, Heaney C, Mottet L, Fang F, Lin W, Navon I, Guo Y, Matar O, Robins A, Pain C (2019) A reduced order model for turbulent flows in the urban environment using machine learning. Build Environ 148:323–337CrossRef Xiao D, Heaney C, Mottet L, Fang F, Lin W, Navon I, Guo Y, Matar O, Robins A, Pain C (2019) A reduced order model for turbulent flows in the urban environment using machine learning. Build Environ 148:323–337CrossRef
7.
Zurück zum Zitat Zhao T, Zheng Y, Gong J, Wu Z (2022) Machine learning-based reduced-order modeling and predictive control of nonlinear processes. Chem Eng Res Des 179:435–451CrossRef Zhao T, Zheng Y, Gong J, Wu Z (2022) Machine learning-based reduced-order modeling and predictive control of nonlinear processes. Chem Eng Res Des 179:435–451CrossRef
8.
Zurück zum Zitat Lou X, Gandy D (2019) Advanced manufacturing for nuclear energy. Jom 71(8):2834–2836CrossRef Lou X, Gandy D (2019) Advanced manufacturing for nuclear energy. Jom 71(8):2834–2836CrossRef
9.
Zurück zum Zitat Rodriguez SB, Kustas A, Monroe G (2020) Metal alloy and rhea additive manufacturing for nuclear energy and aerospace applications. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) Rodriguez SB, Kustas A, Monroe G (2020) Metal alloy and rhea additive manufacturing for nuclear energy and aerospace applications. Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)
10.
Zurück zum Zitat Raftery AM, Seibert RL, Brown DR, Trammell MP, Nelson AT, Terrani KA (2021) Fabrication of UN-Mo CERMET nuclear fuel using advanced manufacturing techniques. Nucl Technol 207(6):815–824CrossRef Raftery AM, Seibert RL, Brown DR, Trammell MP, Nelson AT, Terrani KA (2021) Fabrication of UN-Mo CERMET nuclear fuel using advanced manufacturing techniques. Nucl Technol 207(6):815–824CrossRef
11.
Zurück zum Zitat Yushu D, McMurtrey MD, Jiang W, Kong F (2022) Directed energy deposition process modeling: a geometry-free thermo-mechanical model with adaptive subdomain construction. Int J Adv Manuf Technol 122(2):849–868CrossRef Yushu D, McMurtrey MD, Jiang W, Kong F (2022) Directed energy deposition process modeling: a geometry-free thermo-mechanical model with adaptive subdomain construction. Int J Adv Manuf Technol 122(2):849–868CrossRef
12.
Zurück zum Zitat Lindsay AD, Gaston DR, Permann CJ, Miller JM, Andrš D, Slaughter AE, Kong F, Hansel J, Carlsen RW, Icenhour C, et al (2022) 2.0-MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 20:101202 Lindsay AD, Gaston DR, Permann CJ, Miller JM, Andrš D, Slaughter AE, Kong F, Hansel J, Carlsen RW, Icenhour C, et al (2022) 2.0-MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 20:101202
13.
Zurück zum Zitat Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef
14.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH
15.
Zurück zum Zitat Patel S, Mekavibul J, Park J, Kolla A, French R, Kersey Z, Lewin GC (2019) Using machine learning to analyze image data from advanced manufacturing processes. In: 2019 systems and information engineering design symposium (SIEDS). IEEE, pp 1–5 Patel S, Mekavibul J, Park J, Kolla A, French R, Kersey Z, Lewin GC (2019) Using machine learning to analyze image data from advanced manufacturing processes. In: 2019 systems and information engineering design symposium (SIEDS). IEEE, pp 1–5
16.
Zurück zum Zitat Khanzadeh M, Chowdhury S, Marufuzzaman M, Tschopp MA, Bian L (2018) Porosity prediction: supervised-learning of thermal history for direct laser deposition. J Manuf Syst 47:69–82CrossRef Khanzadeh M, Chowdhury S, Marufuzzaman M, Tschopp MA, Bian L (2018) Porosity prediction: supervised-learning of thermal history for direct laser deposition. J Manuf Syst 47:69–82CrossRef
17.
Zurück zum Zitat Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng B J Eng Manufact 231(1):96–117CrossRef Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review. Proc Inst Mech Eng B J Eng Manufact 231(1):96–117CrossRef
18.
Zurück zum Zitat Barrionuevo GO, Sequeira-Almeida PM, Ríos S, Ramos-Grez JA, Williams SW (2022) A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing. Int J Adv Manuf Technol 120(5–6):3123–3133CrossRef Barrionuevo GO, Sequeira-Almeida PM, Ríos S, Ramos-Grez JA, Williams SW (2022) A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing. Int J Adv Manuf Technol 120(5–6):3123–3133CrossRef
19.
Zurück zum Zitat Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67:619–635MathSciNetCrossRefMATH Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67:619–635MathSciNetCrossRefMATH
20.
Zurück zum Zitat Yaseen M, Yushu D, German P, Wu X (2023) Reduced order modeling of a MOOSE-based advanced manufacturing model with operator learning. Proceedings of M &C 2023 Yaseen M, Yushu D, German P, Wu X (2023) Reduced order modeling of a MOOSE-based advanced manufacturing model with operator learning. Proceedings of M &C 2023
21.
Zurück zum Zitat Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004CrossRef Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004CrossRef
22.
Zurück zum Zitat Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware, Inc Ayachit U (2015) The paraview guide: a parallel visualization application. Kitware, Inc
23.
Zurück zum Zitat Hernández-Becerro P, Spescha D, Wegener K (2021) Model order reduction of thermo-mechanical models with parametric convective boundary conditions: focus on machine tools. Comput Mech 67(1):167–184MathSciNetCrossRefMATH Hernández-Becerro P, Spescha D, Wegener K (2021) Model order reduction of thermo-mechanical models with parametric convective boundary conditions: focus on machine tools. Comput Mech 67(1):167–184MathSciNetCrossRefMATH
24.
Zurück zum Zitat Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A, Anandkumar A (2021) Neural operator: learning maps between function spaces. arXiv preprint arXiv:2108.08481 Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A, Anandkumar A (2021) Neural operator: learning maps between function spaces. arXiv preprint arXiv:​2108.​08481
25.
Zurück zum Zitat Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A (2020) Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A (2020) Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:​2010.​08895
26.
Zurück zum Zitat Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE (2022) A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data. Comput Methods Appl Mech Eng 393:114778MathSciNetCrossRefMATH Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE (2022) A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data. Comput Methods Appl Mech Eng 393:114778MathSciNetCrossRefMATH
27.
Zurück zum Zitat Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229CrossRef
28.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetMATH
29.
Zurück zum Zitat Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280MathSciNetCrossRefMATH Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280MathSciNetCrossRefMATH
30.
Zurück zum Zitat Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270MathSciNetCrossRefMATH Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270MathSciNetCrossRefMATH
Metadaten
Titel
Fast and accurate reduced-order modeling of a MOOSE-based additive manufacturing model with operator learning
verfasst von
Mahmoud Yaseen
Dewen Yushu
Peter German
Xu Wu
Publikationsdatum
21.10.2023
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2023
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-023-12471-1

Weitere Artikel der Ausgabe 7-8/2023

The International Journal of Advanced Manufacturing Technology 7-8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.