Skip to main content
Erschienen in: Microsystem Technologies 4/2016

14.02.2015 | Technical Paper

Fast fabrication of microfluidic devices using a low-cost prototyping method

verfasst von: Lei Wang, Wenfang Liu, Shuang Li, Tingting Liu, Xingxing Yan, Yuye Shi, Zeneng Cheng, Chuanpin Chen

Erschienen in: Microsystem Technologies | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional ways to produce microfluidic devices cost a lot due to the requirements for cleanroom environments and expensive equipment, which prevents the wider applications of microfluidics in academia and in industry. In this paper, a dry film photoresist was utilized in a simple way to reduce the fabrication cost of microfluidic masters. Thus, a fast prototyping and fabrication of microstructures in polydimethylsiloxane microchips through a replica molding technology was achieved in a low-cost setting within 2.5 h. Subsequently, major manufacturing conditions were optimized to acquire well-resolved microfluidic molds, and the replicated microchips were validated to be of good performance. A T-junction channel microchip was fabricated by using a dry film master to generate water droplets of uniform target size. Meanwhile, a gated injection of fluorescein sodium and a contactless conductivity detection of Na+ were both performed in a crosslink channel microchip via capillary electrophoresis, in other words, this fast prototyping and fabrication method would be an efficient, economical way to embody structural design into microfluidic chips for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRef Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRef
Zurück zum Zitat Ansari K, Ying JYS, Hauser PC, Rooij NF, Rodriguez I (2013) A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Electrophoresis 34:1390–1399CrossRef Ansari K, Ying JYS, Hauser PC, Rooij NF, Rodriguez I (2013) A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. Electrophoresis 34:1390–1399CrossRef
Zurück zum Zitat Chen C, Hahn JH (2007) Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis. Anal Chem 79:7182–7186CrossRef Chen C, Hahn JH (2007) Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis. Anal Chem 79:7182–7186CrossRef
Zurück zum Zitat Chen Z, Gao Y, Su R, Li C, Lin J (2003) Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis 24:3246–3252CrossRef Chen Z, Gao Y, Su R, Li C, Lin J (2003) Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis 24:3246–3252CrossRef
Zurück zum Zitat Chen C, Zhu Y, Leech PW, Manasseh R (2009) Production of monodispersed micron-sized bubbles at high rates in a microfluidic device. Appl Phys Lett 95:144101–144103CrossRef Chen C, Zhu Y, Leech PW, Manasseh R (2009) Production of monodispersed micron-sized bubbles at high rates in a microfluidic device. Appl Phys Lett 95:144101–144103CrossRef
Zurück zum Zitat Chen C, Teng W, Hahn JH (2011) Nanoband electrode for high-performance in-channel amperometric detection in dual-channel microchip capillary electrophoresis. Electrophoresis 32:838–843CrossRef Chen C, Teng W, Hahn JH (2011) Nanoband electrode for high-performance in-channel amperometric detection in dual-channel microchip capillary electrophoresis. Electrophoresis 32:838–843CrossRef
Zurück zum Zitat Dongre C, van Weerd J, Besselink GA, van Weeghel R, Vazquez RM, Osellame R, Cerullo G, Cretich M, Chiari M, Hoekstra HJ (2010) High-resolution electrophoretic separation and integrated-waveguide excitation of fluorescent DNA molecules in a lab on a chip. Electrophoresis 31:2584–2588CrossRef Dongre C, van Weerd J, Besselink GA, van Weeghel R, Vazquez RM, Osellame R, Cerullo G, Cretich M, Chiari M, Hoekstra HJ (2010) High-resolution electrophoretic separation and integrated-waveguide excitation of fluorescent DNA molecules in a lab on a chip. Electrophoresis 31:2584–2588CrossRef
Zurück zum Zitat Fredlake CP, Hert DG, Niedringhaus TP, Lin JS, Barron AE (2012) Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks. Electrophoresis 33:1411–1420CrossRef Fredlake CP, Hert DG, Niedringhaus TP, Lin JS, Barron AE (2012) Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks. Electrophoresis 33:1411–1420CrossRef
Zurück zum Zitat Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:26502–26507CrossRef Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:26502–26507CrossRef
Zurück zum Zitat Fu L, Yang R, Lee G, Liu H (2002) Electrokinetic injection techniques in microfluidic chips. Anal Chem 74:5084–5091CrossRef Fu L, Yang R, Lee G, Liu H (2002) Electrokinetic injection techniques in microfluidic chips. Anal Chem 74:5084–5091CrossRef
Zurück zum Zitat Guijt RM, Armstrong JP, Candish E, Lefleur V, Percey WJ, Shabala S, Hauser PC, Breadmore MC (2011) Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sens Actuators B Chem 159:307–313CrossRef Guijt RM, Armstrong JP, Candish E, Lefleur V, Percey WJ, Shabala S, Hauser PC, Breadmore MC (2011) Microfluidic chips for capillary electrophoresis with integrated electrodes for capacitively coupled conductivity detection based on printed circuit board technology. Sens Actuators B Chem 159:307–313CrossRef
Zurück zum Zitat Gunther A, Khan SA, Thalmann M, Trachsel F, Jensen KF (2004) Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4:278–286CrossRef Gunther A, Khan SA, Thalmann M, Trachsel F, Jensen KF (2004) Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4:278–286CrossRef
Zurück zum Zitat Huang Y, Du W, Pan J, Fang Q (2008) Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows. Analyst 133:1237–1241CrossRef Huang Y, Du W, Pan J, Fang Q (2008) Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows. Analyst 133:1237–1241CrossRef
Zurück zum Zitat Ibarlucea B, Diez-Gil C, Ratera I, Veciana J, Caballero A, Zapata F, Tarraga A, Molina P, Demming S, Buttgenbach S (2013) PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst 138:839–844CrossRef Ibarlucea B, Diez-Gil C, Ratera I, Veciana J, Caballero A, Zapata F, Tarraga A, Molina P, Demming S, Buttgenbach S (2013) PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst 138:839–844CrossRef
Zurück zum Zitat Kim J, Hwang I, Britain D, Chung TD, Sun Y, Kim D (2011) Microfluidic approaches for gene delivery and gene therapy. Lab Chip 11:3941–3948CrossRef Kim J, Hwang I, Britain D, Chung TD, Sun Y, Kim D (2011) Microfluidic approaches for gene delivery and gene therapy. Lab Chip 11:3941–3948CrossRef
Zurück zum Zitat Li Q, Pei J, Song P, Kennedy RT (2010) Fraction collection from capillary liquid chromatography and off-line electrospray ionization mass spectrometry using oil segmented flow. Anal Chem 82:5260–5267CrossRef Li Q, Pei J, Song P, Kennedy RT (2010) Fraction collection from capillary liquid chromatography and off-line electrospray ionization mass spectrometry using oil segmented flow. Anal Chem 82:5260–5267CrossRef
Zurück zum Zitat Lin C, Lee G, Chang B, Chang G (2002) A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J Micromech Microeng 12:590–597CrossRef Lin C, Lee G, Chang B, Chang G (2002) A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J Micromech Microeng 12:590–597CrossRef
Zurück zum Zitat Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji H (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27:1977–1983CrossRef Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji H (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27:1977–1983CrossRef
Zurück zum Zitat Martinez-Duarte R (2012) Microfabrication technologies in dielectrophoresis applications: review. Electrophoresis 33:3110–3132CrossRef Martinez-Duarte R (2012) Microfabrication technologies in dielectrophoresis applications: review. Electrophoresis 33:3110–3132CrossRef
Zurück zum Zitat Minarik M, Kopeckova M, Gassman M, Osmancik P, Benesova L (2012) Rapid testing of clopidogrel resistance by genotyping of CYP2C19 and CYP2C9 polymorphisms using denaturing on-chip capillary electrophoresis. Electrophoresis 33:1306–1310CrossRef Minarik M, Kopeckova M, Gassman M, Osmancik P, Benesova L (2012) Rapid testing of clopidogrel resistance by genotyping of CYP2C19 and CYP2C9 polymorphisms using denaturing on-chip capillary electrophoresis. Electrophoresis 33:1306–1310CrossRef
Zurück zum Zitat Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632CrossRef Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632CrossRef
Zurück zum Zitat Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908CrossRef Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908CrossRef
Zurück zum Zitat Osaki T, Yoshizawa S, Kawano R, Sasaki H, Takeuchi S (2011) Lipid-coated microdroplet array for in vitro protein synthesis. Anal Chem 83:3186–3191CrossRef Osaki T, Yoshizawa S, Kawano R, Sasaki H, Takeuchi S (2011) Lipid-coated microdroplet array for in vitro protein synthesis. Anal Chem 83:3186–3191CrossRef
Zurück zum Zitat Pei J, Li Q, Kennedy RT (2010) Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J Am Soc Mass Spectr 21:1107–1113CrossRef Pei J, Li Q, Kennedy RT (2010) Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J Am Soc Mass Spectr 21:1107–1113CrossRef
Zurück zum Zitat Reiser A (1989) Photoreactive polymers: the science and technology of resists. Wiley, New York Reiser A (1989) Photoreactive polymers: the science and technology of resists. Wiley, New York
Zurück zum Zitat Srisa-Art M, Bonzani IC, Williams A, Stevens MM, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134:2239–2245CrossRef Srisa-Art M, Bonzani IC, Williams A, Stevens MM, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134:2239–2245CrossRef
Zurück zum Zitat Stephan K, Pittet P, Renaud L, Kleimann P, Morin P, Ouaini N, Ferrigno R (2007) Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J Micromech Microeng 17:N69–N74CrossRef Stephan K, Pittet P, Renaud L, Kleimann P, Morin P, Ouaini N, Ferrigno R (2007) Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J Micromech Microeng 17:N69–N74CrossRef
Zurück zum Zitat Tantra R, Robinson K, Sikora A (2014) Variability of microchip capillary electrophoresis with conductivity detection. Electrophoresis 35:263–270CrossRef Tantra R, Robinson K, Sikora A (2014) Variability of microchip capillary electrophoresis with conductivity detection. Electrophoresis 35:263–270CrossRef
Zurück zum Zitat Tsai Y, Jen H, Lin K, Hsieh Y (2006) Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. J Chromatogr A 1111:267–271CrossRef Tsai Y, Jen H, Lin K, Hsieh Y (2006) Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. J Chromatogr A 1111:267–271CrossRef
Zurück zum Zitat Vulto P, Glade N, Altomare L, Bablet J, Del Tin L, Medoro G, Chartier I, Manaresi N, Tartagni M, Guerrieri R (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162CrossRef Vulto P, Glade N, Altomare L, Bablet J, Del Tin L, Medoro G, Chartier I, Manaresi N, Tartagni M, Guerrieri R (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162CrossRef
Zurück zum Zitat Wegrzyn J, Samborski A, Reissig L, Korczyk PM, Blonski S, Garstecki P (2013) Microfluidic architectures for efficient generation of chemistry gradations in droplets. Microfluid Nanofluid 14:235–245CrossRef Wegrzyn J, Samborski A, Reissig L, Korczyk PM, Blonski S, Garstecki P (2013) Microfluidic architectures for efficient generation of chemistry gradations in droplets. Microfluid Nanofluid 14:235–245CrossRef
Zurück zum Zitat Wu W, Lee NY (2012) Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. Analyst 137:2069–2076CrossRef Wu W, Lee NY (2012) Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. Analyst 137:2069–2076CrossRef
Zurück zum Zitat Wu N, Courtois F, Surjadi R, Oakeshott J, Peat TS, Easton CJ, Abell C, Zhu Y (2011) Enzyme synthesis and activity assay in microfluidic droplets on a chip. Eng Life Sci 11:157–164CrossRef Wu N, Courtois F, Surjadi R, Oakeshott J, Peat TS, Easton CJ, Abell C, Zhu Y (2011) Enzyme synthesis and activity assay in microfluidic droplets on a chip. Eng Life Sci 11:157–164CrossRef
Zurück zum Zitat Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef
Zurück zum Zitat Zhu Y, Power BE (2008) Lab-on-a-chip in vitro compartmentalization technologies for protein studies. Adv Biochem Eng Biot 110:81–114 Zhu Y, Power BE (2008) Lab-on-a-chip in vitro compartmentalization technologies for protein studies. Adv Biochem Eng Biot 110:81–114
Metadaten
Titel
Fast fabrication of microfluidic devices using a low-cost prototyping method
verfasst von
Lei Wang
Wenfang Liu
Shuang Li
Tingting Liu
Xingxing Yan
Yuye Shi
Zeneng Cheng
Chuanpin Chen
Publikationsdatum
14.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 4/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2465-z

Weitere Artikel der Ausgabe 4/2016

Microsystem Technologies 4/2016 Zur Ausgabe

Neuer Inhalt