Skip to main content
Erschienen in: Journal of Materials Science 21/2022

15.01.2022 | Metal Additive Manufacturing

Fatigue crack growth resistance of a mesoscale composite microstructure Haynes 282 fabricated via electron beam melting additive manufacturing

verfasst von: Patxi Fernandez-Zelaia, Julio Ortega Rojas, James Ferguson, Sebastien Dryepondt, Michael M. Kirka

Erschienen in: Journal of Materials Science | Ausgabe 21/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Materials synthesis via additive manufacturing gives unprecedented control over the solidified microstructure. While a number of studies have demonstrated the ability to produce spatially varying microstructures, little work exists to understand the behavior of such “composite” materials. In this work, we utilized electron beam melting to process Ni-based superalloy Haynes 282 and produce compact tension samples with a spatially varying mesoscale structure. Fatigue crack growth experiments reveal that the crack growth rate is dependent on the degree of microstructural heterogeneity. This work demonstrates that the crack growth resistance can be tailored within a component using electron beam melting additive manufacturing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adair D, Kirka M, Ryan D (2019) Additive manufacture of prototype turbine blades for hot-fired engine performance validation trials. In: Turbo Expo: Power for Land, Sea, and Air, vol. 58677 (American Society of Mechanical Engineers, 2019), vol. 58677, p V006T24A012 Adair D, Kirka M, Ryan D (2019) Additive manufacture of prototype turbine blades for hot-fired engine performance validation trials. In: Turbo Expo: Power for Land, Sea, and Air, vol. 58677 (American Society of Mechanical Engineers, 2019), vol. 58677, p V006T24A012
2.
Zurück zum Zitat Kirka MM, Fernandez-Zelaia P, Lee Y, Nandwana P, Yoder S, Acevedo O, Ryan D (2020) Mechanical Performance of a Non-weldable Ni-Base Superalloy: Inconel 738 Fabricated by Electron Beam Melting. Superalloys 2020, Springer, pp 1075–1084 Kirka MM, Fernandez-Zelaia P, Lee Y, Nandwana P, Yoder S, Acevedo O, Ryan D (2020) Mechanical Performance of a Non-weldable Ni-Base Superalloy: Inconel 738 Fabricated by Electron Beam Melting. Superalloys 2020, Springer, pp 1075–1084
3.
Zurück zum Zitat Fernandez-Zelaia P, Ledford C, Ellis EA, Campbell Q, Rossy AM, Leonard DN, Kirka MM (2021) Crystallographic texture evolution in electron beam melting additive manufacturing of pure molybdenum. Mater Des 207:109809CrossRef Fernandez-Zelaia P, Ledford C, Ellis EA, Campbell Q, Rossy AM, Leonard DN, Kirka MM (2021) Crystallographic texture evolution in electron beam melting additive manufacturing of pure molybdenum. Mater Des 207:109809CrossRef
4.
Zurück zum Zitat Lee Y, Kirka MM, Ferguson J, Paquit VC (2020) Correlations of cracking with scan strategy and build geometry in electron beam powder bed additive manufacturing. Addit Manuf 32:101031 Lee Y, Kirka MM, Ferguson J, Paquit VC (2020) Correlations of cracking with scan strategy and build geometry in electron beam powder bed additive manufacturing. Addit Manuf 32:101031
5.
Zurück zum Zitat Lee Y, Kirka MM, Kim S, Sridharan N, Okello A, Dehoff RR, Babu SS (2018) Asymmetric cracking in mar-m247 alloy builds during electron beam powder bed fusion additive manufacturing. Metall Mater Trans A 49(10):5065–5079CrossRef Lee Y, Kirka MM, Kim S, Sridharan N, Okello A, Dehoff RR, Babu SS (2018) Asymmetric cracking in mar-m247 alloy builds during electron beam powder bed fusion additive manufacturing. Metall Mater Trans A 49(10):5065–5079CrossRef
6.
Zurück zum Zitat Sames WJ, List F, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360CrossRef Sames WJ, List F, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360CrossRef
7.
Zurück zum Zitat Müller Av, Schlick G, Neu R, Anstätt C, Klimkait T, Lee J, Pascher B, Schmitt M, Seidel C (2019) Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000c. Nucl Mater Energy, 19:184–188 Müller Av, Schlick G, Neu R, Anstätt C, Klimkait T, Lee J, Pascher B, Schmitt M, Seidel C (2019) Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000c. Nucl Mater Energy, 19:184–188
8.
Zurück zum Zitat Uddin SZ, Espalin D, Mireles J, Morton P, Terrazas C, Collins S, Murr LE, Wicker R (2017) Laser powder bed fusion fabrication and characterization of crack-free aluminum alloy 6061 using in-process powder bed induction heating. In: Proceedings of SFF symposium (2017), vol. 2017, pp 214–227 Uddin SZ, Espalin D, Mireles J, Morton P, Terrazas C, Collins S, Murr LE, Wicker R (2017) Laser powder bed fusion fabrication and characterization of crack-free aluminum alloy 6061 using in-process powder bed induction heating. In: Proceedings of SFF symposium (2017), vol. 2017, pp 214–227
9.
Zurück zum Zitat Raghavan N, Dehoff R, Pannala S, Simunovic S, Kirka M, Turner J, Carlson N, Babu SS (2016) Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater 112:303–314CrossRef Raghavan N, Dehoff R, Pannala S, Simunovic S, Kirka M, Turner J, Carlson N, Babu SS (2016) Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater 112:303–314CrossRef
10.
Zurück zum Zitat Raghavan N, Simunovic S, Dehoff R, Plotkowski A, Turner J, Kirka M, Babu S (2017) Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Mater 140:375–387CrossRef Raghavan N, Simunovic S, Dehoff R, Plotkowski A, Turner J, Kirka M, Babu S (2017) Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Mater 140:375–387CrossRef
11.
Zurück zum Zitat Dehoff RR, Kirka M, Sames W, Bilheux H, Tremsin A, Lowe L, Babu S (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31(8):931–938CrossRef Dehoff RR, Kirka M, Sames W, Bilheux H, Tremsin A, Lowe L, Babu S (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31(8):931–938CrossRef
12.
Zurück zum Zitat Fernandez-Zelaia P, Kirka MM, Dryepondt SN, Gussev MN (2020) Crystallographic texture control in electron beam additive manufacturing via conductive manipulation. Mater Design 195:109010CrossRef Fernandez-Zelaia P, Kirka MM, Dryepondt SN, Gussev MN (2020) Crystallographic texture control in electron beam additive manufacturing via conductive manipulation. Mater Design 195:109010CrossRef
13.
Zurück zum Zitat Wei H, Mazumder J, DebRoy T (2015) Evolution of solidification texture during additive manufacturing. Sci Rep 5:16446CrossRef Wei H, Mazumder J, DebRoy T (2015) Evolution of solidification texture during additive manufacturing. Sci Rep 5:16446CrossRef
14.
Zurück zum Zitat Körner C, Ramsperger M, Meid C, Bürger D, Wollgramm P, Bartsch M, Eggeler G (2018) Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing. Metall Mater Trans A 49(9):3781–3792CrossRef Körner C, Ramsperger M, Meid C, Bürger D, Wollgramm P, Bartsch M, Eggeler G (2018) Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing. Metall Mater Trans A 49(9):3781–3792CrossRef
15.
Zurück zum Zitat Ramsperger M, Singer RF, Körner C (2016) Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall and Mater Trans A 47(3):1469–1480CrossRef Ramsperger M, Singer RF, Körner C (2016) Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall and Mater Trans A 47(3):1469–1480CrossRef
16.
Zurück zum Zitat Chauvet E, Tassin C, Blandin JJ, Dendievel R, Martin G (2018) Producing Ni-base superalloys single crystal by selective electron beam melting. Scripta Mater 152:15–19CrossRef Chauvet E, Tassin C, Blandin JJ, Dendievel R, Martin G (2018) Producing Ni-base superalloys single crystal by selective electron beam melting. Scripta Mater 152:15–19CrossRef
17.
Zurück zum Zitat Popovich V, Borisov E, Sufiyarov VS, Popovich A (2019) Tailoring the properties in functionally graded alloy inconel 718 using additive technologies. Metal Sci Heat Treat 60(11–12):701–709CrossRef Popovich V, Borisov E, Sufiyarov VS, Popovich A (2019) Tailoring the properties in functionally graded alloy inconel 718 using additive technologies. Metal Sci Heat Treat 60(11–12):701–709CrossRef
18.
Zurück zum Zitat Thijs L, Sistiaga MLM, Wauthle R, Xie Q, Kruth JP, Van Humbeeck J (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater 61(12):4657–4668CrossRef Thijs L, Sistiaga MLM, Wauthle R, Xie Q, Kruth JP, Van Humbeeck J (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater 61(12):4657–4668CrossRef
19.
Zurück zum Zitat Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng, A 620:213–222CrossRef Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng, A 620:213–222CrossRef
20.
Zurück zum Zitat Etter T, Kunze K, Geiger F, Meidani H (2015) Reduction in mechanical anisotropy through high temperature heat treatment of Hastelloy X processed by Selective Laser Melting (SLM). In: IOP conference series: materials science and engineering, (IOP Publishing, 2015), vol. 82, p 012097 Etter T, Kunze K, Geiger F, Meidani H (2015) Reduction in mechanical anisotropy through high temperature heat treatment of Hastelloy X processed by Selective Laser Melting (SLM). In: IOP conference series: materials science and engineering, (IOP Publishing, 2015), vol. 82, p 012097
21.
Zurück zum Zitat Montero-Sistiaga ML, Pourbabak S, Van Humbeeck J, Schryvers D, Vanmeensel K (2019) Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater Design 165:107598CrossRef Montero-Sistiaga ML, Pourbabak S, Van Humbeeck J, Schryvers D, Vanmeensel K (2019) Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater Design 165:107598CrossRef
22.
Zurück zum Zitat Balachandramurthi AR, Moverare J, Dixit N, Deng D, Pederson R (2019) Microstructural influence on fatigue crack propagation during high cycle fatigue testing of additively manufactured Alloy 718. Mater Charact 149:82–94CrossRef Balachandramurthi AR, Moverare J, Dixit N, Deng D, Pederson R (2019) Microstructural influence on fatigue crack propagation during high cycle fatigue testing of additively manufactured Alloy 718. Mater Charact 149:82–94CrossRef
23.
Zurück zum Zitat Zhai Y, Galarraga H, Lados DA (2016) Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Eng Fail Anal 69:3–14CrossRef Zhai Y, Galarraga H, Lados DA (2016) Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Eng Fail Anal 69:3–14CrossRef
24.
Zurück zum Zitat Zhang X, Martina F, Ding J, Wang X, Williams SW (2017) Fracture toughness and fatigue crack growth rate properties in wire+ arc additive manufactured Ti-6Al-4V. Fatigue Fract Eng Mater Struct 40(5):790–803CrossRef Zhang X, Martina F, Ding J, Wang X, Williams SW (2017) Fracture toughness and fatigue crack growth rate properties in wire+ arc additive manufactured Ti-6Al-4V. Fatigue Fract Eng Mater Struct 40(5):790–803CrossRef
25.
Zurück zum Zitat Xie Y, Gao M, Wang F, Zhang C, Hao K, Wang H, Zeng X (2018) Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V. Mater Sci Eng, A 709:265–269CrossRef Xie Y, Gao M, Wang F, Zhang C, Hao K, Wang H, Zeng X (2018) Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V. Mater Sci Eng, A 709:265–269CrossRef
26.
Zurück zum Zitat Zhang J, Wang X, Paddea S, Zhang X (2016) Fatigue crack propagation behaviour in wire+ arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress. Mater Design 90:551–561CrossRef Zhang J, Wang X, Paddea S, Zhang X (2016) Fatigue crack propagation behaviour in wire+ arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress. Mater Design 90:551–561CrossRef
27.
Zurück zum Zitat Pei C, Shi D, Yuan H, Li H (2019) Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Mater Sci Eng, A 759:278–287CrossRef Pei C, Shi D, Yuan H, Li H (2019) Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Mater Sci Eng, A 759:278–287CrossRef
28.
Zurück zum Zitat Nezhadfar P, Burford E, Anderson-Wedge K, Zhang B, Shao S, Daniewicz S, Shamsaei N (2019) Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure. Int J Fatigue 123:168–179CrossRef Nezhadfar P, Burford E, Anderson-Wedge K, Zhang B, Shao S, Daniewicz S, Shamsaei N (2019) Fatigue crack growth behavior of additively manufactured 17-4 PH stainless steel: Effects of build orientation and microstructure. Int J Fatigue 123:168–179CrossRef
29.
Zurück zum Zitat Riemer A, Leuders S, Thöne M, Richard H, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25CrossRef Riemer A, Leuders S, Thöne M, Richard H, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25CrossRef
30.
Zurück zum Zitat Krueger DD, Antolovich SD, Van Stone RH (1987) Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 C. Metall Trans A 18(8):1431–1449CrossRef Krueger DD, Antolovich SD, Van Stone RH (1987) Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 C. Metall Trans A 18(8):1431–1449CrossRef
32.
Zurück zum Zitat Musinski WD, McDowell DL (2016) Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains. Acta Mater 112:20–39CrossRef Musinski WD, McDowell DL (2016) Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains. Acta Mater 112:20–39CrossRef
33.
Zurück zum Zitat Musinski WD, McDowell DL (2012) Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components. Int J Fatigue 37:41–53CrossRef Musinski WD, McDowell DL (2012) Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components. Int J Fatigue 37:41–53CrossRef
34.
Zurück zum Zitat Babu SS, Raghavan N, Raplee J, Foster SJ, Frederick C, Haines M, Dinwiddie R, Kirka M, Plotkowski A, Lee Y et al (2018) Additive manufacturing of nickel superalloys: opportunities for innovation and challenges related to qualification. Metall Mater Trans A 49(9):3764–3780CrossRef Babu SS, Raghavan N, Raplee J, Foster SJ, Frederick C, Haines M, Dinwiddie R, Kirka M, Plotkowski A, Lee Y et al (2018) Additive manufacturing of nickel superalloys: opportunities for innovation and challenges related to qualification. Metall Mater Trans A 49(9):3764–3780CrossRef
35.
Zurück zum Zitat Reed RC (2008) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge Reed RC (2008) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge
38.
Zurück zum Zitat Lee Y, Kirka MM, Raghavan N, Dehoff RR (2017) Simulation of spot melting scan strategy to predict columnar to equiaxed transition in metal additive manufacturing. Tech. rep. Oak Ridge National Lab. (ORNL), Oak Ridge, TN United States. 1005–1017 Lee Y, Kirka MM, Raghavan N, Dehoff RR (2017) Simulation of spot melting scan strategy to predict columnar to equiaxed transition in metal additive manufacturing. Tech. rep. Oak Ridge National Lab. (ORNL), Oak Ridge, TN United States. 1005–1017
39.
Zurück zum Zitat Kirka M, Unocic K, Raghavan N, Medina F, Dehoff R, Babu S (2016) Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. JOM 68(3):1012–1020CrossRef Kirka M, Unocic K, Raghavan N, Medina F, Dehoff R, Babu S (2016) Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. JOM 68(3):1012–1020CrossRef
40.
Zurück zum Zitat Kirka MM, Medina F, Dehoff R, Okello A (2017) Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process. Mater Sci Eng, A 680:338–346CrossRef Kirka MM, Medina F, Dehoff R, Okello A (2017) Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process. Mater Sci Eng, A 680:338–346CrossRef
42.
Zurück zum Zitat Standard A (2015) E647, Standard test method for measurement of fatigue crack growth rates. Annu Book ASTM Stand, Sect Three: Metals Test Methods Anal Proced 15:1–49 Standard A (2015) E647, Standard test method for measurement of fatigue crack growth rates. Annu Book ASTM Stand, Sect Three: Metals Test Methods Anal Proced 15:1–49
43.
Zurück zum Zitat Rans C, Michielssen J, Walker M, Wang W et al (2018) Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V. Int J Fatigue 116:344–354CrossRef Rans C, Michielssen J, Walker M, Wang W et al (2018) Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V. Int J Fatigue 116:344–354CrossRef
44.
Zurück zum Zitat Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, UK Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, UK
45.
Zurück zum Zitat Gussev MN, Howard RH, Terrani KA, Field KG (2017) Sub-size tensile specimen design for in-reactor irradiation and post-irradiation testing. Nucl Eng Des 320:298–308CrossRef Gussev MN, Howard RH, Terrani KA, Field KG (2017) Sub-size tensile specimen design for in-reactor irradiation and post-irradiation testing. Nucl Eng Des 320:298–308CrossRef
46.
Zurück zum Zitat Scarlin R (1976) Fatigue crack propagation in a directionally-solidified nickel-base alloy. Metall Trans A 7(10):1535–1541CrossRef Scarlin R (1976) Fatigue crack propagation in a directionally-solidified nickel-base alloy. Metall Trans A 7(10):1535–1541CrossRef
Metadaten
Titel
Fatigue crack growth resistance of a mesoscale composite microstructure Haynes 282 fabricated via electron beam melting additive manufacturing
verfasst von
Patxi Fernandez-Zelaia
Julio Ortega Rojas
James Ferguson
Sebastien Dryepondt
Michael M. Kirka
Publikationsdatum
15.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2022
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06838-6

Weitere Artikel der Ausgabe 21/2022

Journal of Materials Science 21/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.