Skip to main content
Erschienen in: Neural Computing and Applications 24/2020

05.10.2018 | WSOM 2017

Fault tolerance of self-organizing maps

verfasst von: Bernard Girau, Cesar Torres-Huitzil

Erschienen in: Neural Computing and Applications | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bio-inspired computing principles are considered as a source of promising paradigms for fault-tolerant computation. Among bio-inspired approaches, neural networks are potentially capable of absorbing some degrees of vulnerability based on their natural properties. This calls for attention, since beyond energy, the growing number of defects in physical substrates is now a major constraint that affects the design of computing devices. However, studies have shown that most neural networks cannot be considered intrinsically fault tolerant without a proper design. In this paper, the fault tolerance of self-organizing maps (SOMs) is investigated, considering implementations targeted onto field programmable gate arrays, where the bit-flip fault model is employed to inject faults in registers. Quantization and distortion measures are used to evaluate performance on synthetic datasets under different fault ratios. Three passive techniques intended to enhance fault tolerance of SOMs during training/learning are also considered in the evaluation. We also evaluate the influence of technological choices on fault tolerance: sequential or parallel implementation, weight storage policies. Experimental results are analyzed through the evolution of neural prototypes during learning and fault injection. We show that SOMs benefit from an already desirable property: graceful degradation. Moreover, depending on some technological choices, SOMs may become very fault tolerant, and their fault tolerance even improves when weights are stored in an individualized way in the implementation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraham JA, Fuchs WK (1986) Fault and error models for VLSI. Proc IEEE 74(5):639–654CrossRef Abraham JA, Fuchs WK (1986) Fault and error models for VLSI. Proc IEEE 74(5):639–654CrossRef
2.
Zurück zum Zitat Alippi C (2002) Selecting accurate, robust, and minimal feedforward neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 49(12):1799–1810CrossRef Alippi C (2002) Selecting accurate, robust, and minimal feedforward neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 49(12):1799–1810CrossRef
3.
Zurück zum Zitat Allende H, Moreno S, Rogel C, Salas R (2004) Robust self-organizing maps. In: Sanfeliu A, Martínez Trinidad JF, Carrasco Ochoa JA (eds) Progress in pattern recognition, image analysis and applications: 9th Iberoamerican congress on pattern recognition, CIARP 2004, Puebla, Mexico, Oct 26–29, 2004. Proceedings. Springer, Berlin, pp 179–186CrossRef Allende H, Moreno S, Rogel C, Salas R (2004) Robust self-organizing maps. In: Sanfeliu A, Martínez Trinidad JF, Carrasco Ochoa JA (eds) Progress in pattern recognition, image analysis and applications: 9th Iberoamerican congress on pattern recognition, CIARP 2004, Puebla, Mexico, Oct 26–29, 2004. Proceedings. Springer, Berlin, pp 179–186CrossRef
4.
Zurück zum Zitat Amerijckx C, Legat J, Verleysen M (2003) Image compression using self-organizing maps. In: Systems analysis modelling simulation Amerijckx C, Legat J, Verleysen M (2003) Image compression using self-organizing maps. In: Systems analysis modelling simulation
5.
Zurück zum Zitat Avižienis A (1983) Framework for a taxonomy of fault-tolerance attributes in computer systems. SIGARCH Comput Archit News 11(3):16–21CrossRef Avižienis A (1983) Framework for a taxonomy of fault-tolerance attributes in computer systems. SIGARCH Comput Archit News 11(3):16–21CrossRef
6.
Zurück zum Zitat Beaton D, Valova I, MacLean D (2010) Cqoco: a measure for comparative quality of coverage and organization for self-organizing maps. Neurocomputing 73(10–12):2147–2159CrossRef Beaton D, Valova I, MacLean D (2010) Cqoco: a measure for comparative quality of coverage and organization for self-organizing maps. Neurocomputing 73(10–12):2147–2159CrossRef
7.
Zurück zum Zitat Cavalieri S, Mirabella O (1999) A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks. Neural Netw 12(1):91–106CrossRef Cavalieri S, Mirabella O (1999) A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks. Neural Netw 12(1):91–106CrossRef
8.
Zurück zum Zitat Chin CT, Mehrotra K, Mohan CK, Rankat S (1994) Training techniques to obtain fault-tolerant neural networks. In: 24th international symposium on fault-tolerant computing, 1994. FTCS-24. Digest of papers, pp 360–369 Chin CT, Mehrotra K, Mohan CK, Rankat S (1994) Training techniques to obtain fault-tolerant neural networks. In: 24th international symposium on fault-tolerant computing, 1994. FTCS-24. Digest of papers, pp 360–369
9.
Zurück zum Zitat Clemente JA, Mansour W, Ayoubi R, Serrano F, Mecha H, Ziade H, Falou WE, Velazco R (2016) Hardware implementation of a fault-tolerant hopfield neural network on FPGAs. Neurocomputing 171:1606–1609CrossRef Clemente JA, Mansour W, Ayoubi R, Serrano F, Mecha H, Ziade H, Falou WE, Velazco R (2016) Hardware implementation of a fault-tolerant hopfield neural network on FPGAs. Neurocomputing 171:1606–1609CrossRef
10.
Zurück zum Zitat Cottrell M, Olteanu M, Rossi F, Villa-Vialaneix N (2016) Theoretical and applied aspects of . In: Advances in self-organizing maps and learning vector quantization: Proceedings of the 11th international workshop WSOM, pp 3–26 Cottrell M, Olteanu M, Rossi F, Villa-Vialaneix N (2016) Theoretical and applied aspects of . In: Advances in self-organizing maps and learning vector quantization: Proceedings of the 11th international workshop WSOM, pp 3–26
11.
Zurück zum Zitat de Bodt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the reliability of self-organizing maps. Neural Netw 15(8–9):967–978CrossRef de Bodt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the reliability of self-organizing maps. Neural Netw 15(8–9):967–978CrossRef
12.
Zurück zum Zitat Girau B, Torres-Huitzil C (2017) Optimal weight storage improves fault tolerance of SOMs. In: 2017 international conference on ReConFigurable computing and FPGAs (ReConFig), pp 1–6 Girau B, Torres-Huitzil C (2017) Optimal weight storage improves fault tolerance of SOMs. In: 2017 international conference on ReConFigurable computing and FPGAs (ReConFig), pp 1–6
13.
Zurück zum Zitat Hammadi NC, Ito H (1998) Improving the performance of feedforward neural networks by noise injection into hidden neurons. J Intell Robot Syst 21(2):103–115CrossRef Hammadi NC, Ito H (1998) Improving the performance of feedforward neural networks by noise injection into hidden neurons. J Intell Robot Syst 21(2):103–115CrossRef
14.
Zurück zum Zitat Hsueh MC, Tsai TK, Iyer RK (1997) Fault injection techniques and tools. Computer 30(4):75–82CrossRef Hsueh MC, Tsai TK, Iyer RK (1997) Fault injection techniques and tools. Computer 30(4):75–82CrossRef
15.
Zurück zum Zitat Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480CrossRef Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480CrossRef
16.
Zurück zum Zitat Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6CrossRef Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6CrossRef
17.
Zurück zum Zitat Maass W (2014) Noise as a resource for computation and learning in networks of spiking neurons. Proc IEEE 102(5):860–880CrossRef Maass W (2014) Noise as a resource for computation and learning in networks of spiking neurons. Proc IEEE 102(5):860–880CrossRef
18.
Zurück zum Zitat Piuri V (2001) Analysis of fault tolerance in artificial neural networks. J Parallel Distrib Comput 61(1):18–48CrossRef Piuri V (2001) Analysis of fault tolerance in artificial neural networks. J Parallel Distrib Comput 61(1):18–48CrossRef
19.
Zurück zum Zitat Pölzlbauer G (2004) Survey and comparison of quality measures for self-organizing maps. In: Proceedings of the 5th workshop on data analysis (WDA’04), pp 67–82 Pölzlbauer G (2004) Survey and comparison of quality measures for self-organizing maps. In: Proceedings of the 5th workshop on data analysis (WDA’04), pp 67–82
20.
Zurück zum Zitat Protzel PW, Palumbo DL, Arras MK (1993) Performance and fault-tolerance of neural networks for optimization. IEEE Trans Neural Netw 4(4):600–614CrossRef Protzel PW, Palumbo DL, Arras MK (1993) Performance and fault-tolerance of neural networks for optimization. IEEE Trans Neural Netw 4(4):600–614CrossRef
21.
Zurück zum Zitat Rahimi A, Benini L, Gupta RK (2016) Variability mitigation in nanometer cmos integrated systems: a survey of techniques from circuits to software. Proc IEEE 104(7):1410–1448CrossRef Rahimi A, Benini L, Gupta RK (2016) Variability mitigation in nanometer cmos integrated systems: a survey of techniques from circuits to software. Proc IEEE 104(7):1410–1448CrossRef
22.
Zurück zum Zitat Rougier N, Boniface Y (2011) Dynamic self-organising map. Neurocomputing 74(11):1840–1847CrossRef Rougier N, Boniface Y (2011) Dynamic self-organising map. Neurocomputing 74(11):1840–1847CrossRef
23.
Zurück zum Zitat Rynkiewicz J (2006) Self-organizing map algorithm and distortion measure. Neural Netw 19(6–7):830–837CrossRef Rynkiewicz J (2006) Self-organizing map algorithm and distortion measure. Neural Netw 19(6–7):830–837CrossRef
24.
Zurück zum Zitat Sejnowksi T, Delbruck T (2012) The language of the brain. Sci Am 307:54–59 Sejnowksi T, Delbruck T (2012) The language of the brain. Sci Am 307:54–59
25.
Zurück zum Zitat Sequin CH, Clay RD (1990) Fault tolerance in artificial neural networks. In: IJCNN international joint conference on neural networks, 1990, vol 1, pp 703–708 Sequin CH, Clay RD (1990) Fault tolerance in artificial neural networks. In: IJCNN international joint conference on neural networks, 1990, vol 1, pp 703–708
26.
Zurück zum Zitat Talumassawatdi R, Lursinsap C (2001) Fault immunization concept for self-organizing mapping neural networks. Int J Uncertain Fuzziness Knowl Based Syst 09(06):781–790CrossRef Talumassawatdi R, Lursinsap C (2001) Fault immunization concept for self-organizing mapping neural networks. Int J Uncertain Fuzziness Knowl Based Syst 09(06):781–790CrossRef
27.
Zurück zum Zitat Tambara LA, Tonfat J, Santos A, Kastensmidt FL, Medina NH, Added N, Aguiar VAP, Aguirre F, Silveira MAG (2017) Analyzing reliability and performance trade-offs of HLS-based designs in SRAM-based FPGAs under soft errors. IEEE Trans Nuclear Sci 64(2):874–881CrossRef Tambara LA, Tonfat J, Santos A, Kastensmidt FL, Medina NH, Added N, Aguiar VAP, Aguirre F, Silveira MAG (2017) Analyzing reliability and performance trade-offs of HLS-based designs in SRAM-based FPGAs under soft errors. IEEE Trans Nuclear Sci 64(2):874–881CrossRef
28.
Zurück zum Zitat Tchernev EB, Mulvaney RG, Phatak DS (2005) Investigating the fault tolerance of neural networks. Neural Comput 17(7):1646–1664CrossRef Tchernev EB, Mulvaney RG, Phatak DS (2005) Investigating the fault tolerance of neural networks. Neural Comput 17(7):1646–1664CrossRef
29.
Zurück zum Zitat Torres-Huitzil C, Girau B (2017) Fault and error tolerance in neural networks: a review. IEEE Access 5:17322–17341CrossRef Torres-Huitzil C, Girau B (2017) Fault and error tolerance in neural networks: a review. IEEE Access 5:17322–17341CrossRef
30.
Zurück zum Zitat Torres-Huitzil C, Popovych O, Girau B (2017) Fault tolerance of self organizing maps. In: 2017 12th international workshop on self-organizing maps and learning vector quantization, clustering and data visualization (WSOM), pp 1–8 Torres-Huitzil C, Popovych O, Girau B (2017) Fault tolerance of self organizing maps. In: 2017 12th international workshop on self-organizing maps and learning vector quantization, clustering and data visualization (WSOM), pp 1–8
31.
Zurück zum Zitat Ultsch A (1999) Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. In: Oja SKE (ed) Kohonen maps. Elsevier, Amsterdam, pp 33–46CrossRef Ultsch A (1999) Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. In: Oja SKE (ed) Kohonen maps. Elsevier, Amsterdam, pp 33–46CrossRef
32.
Zurück zum Zitat Venkatesh SS (1992) Robustness in neural computation: random graphs and sparsity. IEEE Trans Inf Theory 38(3):1114–1119MathSciNetCrossRef Venkatesh SS (1992) Robustness in neural computation: random graphs and sparsity. IEEE Trans Inf Theory 38(3):1114–1119MathSciNetCrossRef
33.
Zurück zum Zitat von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata studies, pp 43–98 von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata studies, pp 43–98
34.
Zurück zum Zitat Wang Z, Lee KH, Verma N (2015) Overcoming computational errors in sensing platforms through embedded machine-learning kernels. IEEE Trans Very Large Scale Integr VLSI Syst 23(8):1459–1470CrossRef Wang Z, Lee KH, Verma N (2015) Overcoming computational errors in sensing platforms through embedded machine-learning kernels. IEEE Trans Very Large Scale Integr VLSI Syst 23(8):1459–1470CrossRef
35.
Zurück zum Zitat Wu Y, Takatsuka M (2006) Spherical self-organizing map using efficient indexed geodesic data structure. Neural Netw 19(6–7):900–910 (advances in self organising maps—WSOM’05)CrossRef Wu Y, Takatsuka M (2006) Spherical self-organizing map using efficient indexed geodesic data structure. Neural Netw 19(6–7):900–910 (advances in self organising maps—WSOM’05)CrossRef
36.
Zurück zum Zitat Yasunaga M, Hachiya I, Moki K, Kim JH (1998) Fault-tolerant self-organizing map implemented by wafer-scale integration. IEEE Trans Very Large Scale Integr VLSI Syst 6(2):257–265CrossRef Yasunaga M, Hachiya I, Moki K, Kim JH (1998) Fault-tolerant self-organizing map implemented by wafer-scale integration. IEEE Trans Very Large Scale Integr VLSI Syst 6(2):257–265CrossRef
37.
Zurück zum Zitat Zeng X, Yeung DS (2001) Sensitivity analysis of multilayer perceptron to input and weight perturbations. IEEE Trans Neural Netw 12(6):1358–1366CrossRef Zeng X, Yeung DS (2001) Sensitivity analysis of multilayer perceptron to input and weight perturbations. IEEE Trans Neural Netw 12(6):1358–1366CrossRef
Metadaten
Titel
Fault tolerance of self-organizing maps
verfasst von
Bernard Girau
Cesar Torres-Huitzil
Publikationsdatum
05.10.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 24/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3769-6

Weitere Artikel der Ausgabe 24/2020

Neural Computing and Applications 24/2020 Zur Ausgabe

Developing nature-inspired intelligence by neural systems

SC3: self-configuring classifier combination for obstructive sleep apnea

Premium Partner