Skip to main content

2023 | OriginalPaper | Buchkapitel

2. Feature Engineering in Additive Manufacturing

verfasst von : Mutahar Safdar, Guy Lamouche, Padma Polash Paul, Gentry Wood, Yaoyao Fiona Zhao

Erschienen in: Engineering of Additive Manufacturing Features for Data-Driven Solutions

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an overview of feature engineering landscape in additive manufacturing (AM). Domains and paradigms linked to data-driven AM are introduced and discussed. The sources of AM features are introduced in terms of their nature, properties, information variation, and digital representation. A comprehensive introduction to feature engineering techniques for AM is made, which are divided into five broad categories, namely subset selection, generation through transformation, generation through learning, knowledge-driven feature engineering, and integrated feature engineering. As a prerequisite to feature engineering, generic and AM-specific preprocessing techniques are discussed. At the end, different feature operations and libraries relevant to AM are introduced. These techniques are referenced in the next chapter on feature engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Vector-based graphic representations may differ from pixel-based representations during featurization.
 
2
Some texts make distinction between different types of transfer learning (such as domain adaptation).
 
Literatur
1.
Zurück zum Zitat R. Bonnard, J.-Y. Hascoët, P. Mognol, Data model for additive manufacturing digital thread: state of the art and perspectives. Int. J. Comput. Integr. Manuf. 32(12), 1170–1191 (2019)CrossRef R. Bonnard, J.-Y. Hascoët, P. Mognol, Data model for additive manufacturing digital thread: state of the art and perspectives. Int. J. Comput. Integr. Manuf. 32(12), 1170–1191 (2019)CrossRef
2.
Zurück zum Zitat D.B. Kim et al., Streamlining the additive manufacturing digital spectrum: a systems approach. Addit. Manuf. 5, 20–30 (2015) D.B. Kim et al., Streamlining the additive manufacturing digital spectrum: a systems approach. Addit. Manuf. 5, 20–30 (2015)
3.
Zurück zum Zitat Y. Lu et al., Self-improving additive manufacturing knowledge management, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2018) Y. Lu et al., Self-improving additive manufacturing knowledge management, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2018)
4.
Zurück zum Zitat S.C. Feng et al., Fundamental requirements for data representations in laser-based powder bed fusion, in International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2015) S.C. Feng et al., Fundamental requirements for data representations in laser-based powder bed fusion, in International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2015)
5.
Zurück zum Zitat G. Dong, H. Liu, Feature Engineering for Machine Learning and Data Analytics (CRC Press, 2018) G. Dong, H. Liu, Feature Engineering for Machine Learning and Data Analytics (CRC Press, 2018)
6.
Zurück zum Zitat A. Zheng, A. Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (O’Reilly Media, Inc., 2018) A. Zheng, A. Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (O’Reilly Media, Inc., 2018)
7.
Zurück zum Zitat H. Liu, H. Motoda, Feature Extraction, Construction and Selection: A Data Mining Perspective, vol. 453 (Springer Science and Business Media, 1998) H. Liu, H. Motoda, Feature Extraction, Construction and Selection: A Data Mining Perspective, vol. 453 (Springer Science and Business Media, 1998)
8.
Zurück zum Zitat Y. Zhang, M. Safdar, J. Xie, J. Li, M. Sage, Y.F. Zhao, A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management. J. Intell. Manuf. (2022) (forthcoming) Y. Zhang, M. Safdar, J. Xie, J. Li, M. Sage, Y.F. Zhao, A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management. J. Intell. Manuf. (2022) (forthcoming)
9.
Zurück zum Zitat Y. Qin et al., Status, comparison, and future of the representations of additive manufacturing data. Comput. Aided Des. 111, 44–64 (2019)CrossRef Y. Qin et al., Status, comparison, and future of the representations of additive manufacturing data. Comput. Aided Des. 111, 44–64 (2019)CrossRef
10.
Zurück zum Zitat X. Lin et al., Metal-based additive manufacturing condition monitoring methods: from measurement to control. ISA Trans. 120, 147–166 (2022)CrossRef X. Lin et al., Metal-based additive manufacturing condition monitoring methods: from measurement to control. ISA Trans. 120, 147–166 (2022)CrossRef
11.
Zurück zum Zitat M. Khanzadeh et al., Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 47, 69–82 (2018)CrossRef M. Khanzadeh et al., Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 47, 69–82 (2018)CrossRef
12.
Zurück zum Zitat Y. Guo, W.F. Lu, J.Y.H. Fuh, Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process. J. Intell. Manuf. 32(2), 347–359 (2021)CrossRef Y. Guo, W.F. Lu, J.Y.H. Fuh, Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process. J. Intell. Manuf. 32(2), 347–359 (2021)CrossRef
13.
Zurück zum Zitat N. Johnson et al., Invited review: Machine learning for materials developments in metals additive manufacturing. Addit. Manuf. 36, 101641 (2020) N. Johnson et al., Invited review: Machine learning for materials developments in metals additive manufacturing. Addit. Manuf. 36, 101641 (2020)
14.
Zurück zum Zitat B.-M. Roh et al., In-situ observation selection for quality management in metal additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2021) B.-M. Roh et al., In-situ observation selection for quality management in metal additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2021)
15.
Zurück zum Zitat J. Han, J. Pei, H. Tong, Data Mining: Concepts and Techniques (Morgan Kaufmann, 2022) J. Han, J. Pei, H. Tong, Data Mining: Concepts and Techniques (Morgan Kaufmann, 2022)
16.
Zurück zum Zitat Y. Zhang et al., Predictive manufacturability assessment system for laser powder bed fusion based on a hybrid machine learning model. Addit. Manuf. 41, 101946 (2021) Y. Zhang et al., Predictive manufacturability assessment system for laser powder bed fusion based on a hybrid machine learning model. Addit. Manuf. 41, 101946 (2021)
17.
Zurück zum Zitat E.M. Sanfilippo, F. Belkadi, A. Bernard, Ontology-based knowledge representation for additive manufacturing. Comput. Ind. 109, 182–194 (2019)CrossRef E.M. Sanfilippo, F. Belkadi, A. Bernard, Ontology-based knowledge representation for additive manufacturing. Comput. Ind. 109, 182–194 (2019)CrossRef
18.
Zurück zum Zitat E. Lanigan, A NASA Perspective on the Growing Role of In-Situ Process Monitoring in Managing Risk of AM Hardware (2019) E. Lanigan, A NASA Perspective on the Growing Role of In-Situ Process Monitoring in Managing Risk of AM Hardware (2019)
19.
Zurück zum Zitat W. He et al., In-situ monitoring and deformation characterization by optical techniques; part I: laser-aided direct metal deposition for additive manufacturing. Opt. Lasers Eng. 122, 74–88 (2019)CrossRef W. He et al., In-situ monitoring and deformation characterization by optical techniques; part I: laser-aided direct metal deposition for additive manufacturing. Opt. Lasers Eng. 122, 74–88 (2019)CrossRef
20.
Zurück zum Zitat B. Wu et al., In situ monitoring methods for selective laser melting additive manufacturing process based on images—a review. China Foundry 18(4), 265–285 (2021)CrossRef B. Wu et al., In situ monitoring methods for selective laser melting additive manufacturing process based on images—a review. China Foundry 18(4), 265–285 (2021)CrossRef
21.
Zurück zum Zitat K. Zhu, J.Y.H. Fuh, X. Lin, Metal-based additive manufacturing condition monitoring: a review on machine learning based approaches. IEEE/ASME Trans. Mechatron. 27(5), 2495–2510 (2021) K. Zhu, J.Y.H. Fuh, X. Lin, Metal-based additive manufacturing condition monitoring: a review on machine learning based approaches. IEEE/ASME Trans. Mechatron. 27(5), 2495–2510 (2021)
22.
Zurück zum Zitat P. Sreeraj, S.K. Mishra, P.K. Singh, A review on non-destructive evaluation and characterization of additively manufactured components. Prog. Addit. Manuf., 1–24 (2021) P. Sreeraj, S.K. Mishra, P.K. Singh, A review on non-destructive evaluation and characterization of additively manufactured components. Prog. Addit. Manuf., 1–24 (2021)
23.
Zurück zum Zitat K. Lakshminarayan et al., Imputation of missing data using machine learning techniques, in KDD (1996) K. Lakshminarayan et al., Imputation of missing data using machine learning techniques, in KDD (1996)
24.
Zurück zum Zitat S.L. Harris, D. Harris, Digital Design and Computer Architecture (Morgan Kaufmann, 2015) S.L. Harris, D. Harris, Digital Design and Computer Architecture (Morgan Kaufmann, 2015)
25.
Zurück zum Zitat J.M. Bland, D.G. Altman, Transformations, means, and confidence intervals. BMJ Br. Med. J. 312(7038), 1079 (1996) J.M. Bland, D.G. Altman, Transformations, means, and confidence intervals. BMJ Br. Med. J. 312(7038), 1079 (1996)
26.
Zurück zum Zitat S.A. Alasadi, W.S. Bhaya, Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 12(16), 4102–4107 (2017) S.A. Alasadi, W.S. Bhaya, Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 12(16), 4102–4107 (2017)
27.
Zurück zum Zitat (ISO), I.O.F.S., Information Technology—Sensor Networks—Services and Interfaces Supporting Collaborative Information Processing in Intelligent Sensor Networks (2005) (ISO), I.O.F.S., Information Technology—Sensor Networks—Services and Interfaces Supporting Collaborative Information Processing in Intelligent Sensor Networks (2005)
28.
Zurück zum Zitat Z. Snow et al., Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. J. Manuf. Syst. 59, 12–26 (2021)CrossRef Z. Snow et al., Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning. J. Manuf. Syst. 59, 12–26 (2021)CrossRef
29.
Zurück zum Zitat R. Chen et al., From design complexity to build quality in additive manufacturing—a sensor-based perspective. IEEE Sens. Lett. 3(1), 1–4 (2018)MathSciNetCrossRef R. Chen et al., From design complexity to build quality in additive manufacturing—a sensor-based perspective. IEEE Sens. Lett. 3(1), 1–4 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat R. Chen, M. Imani, F. Imani, Joint active search and neuromorphic computing for efficient data exploitation and monitoring in additive manufacturing. J. Manuf. Process. 71, 743–752 (2021)CrossRef R. Chen, M. Imani, F. Imani, Joint active search and neuromorphic computing for efficient data exploitation and monitoring in additive manufacturing. J. Manuf. Process. 71, 743–752 (2021)CrossRef
31.
Zurück zum Zitat J. Francis, L. Bian, Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf. Lett. 20, 10–14 (2019)CrossRef J. Francis, L. Bian, Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf. Lett. 20, 10–14 (2019)CrossRef
32.
Zurück zum Zitat S.C. Feng, Y. Lu, A.T. Jones, Meta-data for in-situ monitoring of laser powder bed fusion processes, in International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2020) S.C. Feng, Y. Lu, A.T. Jones, Meta-data for in-situ monitoring of laser powder bed fusion processes, in International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2020)
33.
Zurück zum Zitat Y. Lu et al., Camera-based coaxial melt pool monitoring data registration for laser powder bed fusion additive manufacturing, in ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2020) Y. Lu et al., Camera-based coaxial melt pool monitoring data registration for laser powder bed fusion additive manufacturing, in ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2020)
34.
Zurück zum Zitat F. Imani, M. Khanzadeh, Image-guided multi-response modeling and characterization of design defects in metal additive manufacturing, in ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2021) F. Imani, M. Khanzadeh, Image-guided multi-response modeling and characterization of design defects in metal additive manufacturing, in ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2021)
35.
Zurück zum Zitat S.C. Feng et al., Additive manufacturing in situ and ex situ geometric data registration. J. Comput. Inf. Sci. Eng. 22(6), 061003 (2022)CrossRef S.C. Feng et al., Additive manufacturing in situ and ex situ geometric data registration. J. Comput. Inf. Sci. Eng. 22(6), 061003 (2022)CrossRef
36.
Zurück zum Zitat J.A. Mitchell et al., Linking pyrometry to porosity in additively manufactured metals. Addit. Manuf. 31, 100946 (2020) J.A. Mitchell et al., Linking pyrometry to porosity in additively manufactured metals. Addit. Manuf. 31, 100946 (2020)
37.
Zurück zum Zitat Y. Zhu et al., Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Addit. Manuf. 34, 101183 (2020) Y. Zhu et al., Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Addit. Manuf. 34, 101183 (2020)
38.
Zurück zum Zitat I.A. Okaro et al., Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit. Manuf. 27, 42–53 (2019) I.A. Okaro et al., Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit. Manuf. 27, 42–53 (2019)
39.
Zurück zum Zitat M. Salloum et al., Adaptive wavelet compression of large additive manufacturing experimental and simulation datasets. Comput. Mech. 63(3), 491–510 (2019)MathSciNetMATHCrossRef M. Salloum et al., Adaptive wavelet compression of large additive manufacturing experimental and simulation datasets. Comput. Mech. 63(3), 491–510 (2019)MathSciNetMATHCrossRef
40.
Zurück zum Zitat L. Scime, B. Fisher, J. Beuth, Using coordinate transforms to improve the utility of a fixed field of view high speed camera for additive manufacturing applications. Manuf. Lett. 15, 104–106 (2018)CrossRef L. Scime, B. Fisher, J. Beuth, Using coordinate transforms to improve the utility of a fixed field of view high speed camera for additive manufacturing applications. Manuf. Lett. 15, 104–106 (2018)CrossRef
41.
Zurück zum Zitat S.C. Feng, Y. Lu, A.T. Jones, Measured data alignments for monitoring metal additive manufacturing processes using laser powder bed fusion methods, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2020) S.C. Feng, Y. Lu, A.T. Jones, Measured data alignments for monitoring metal additive manufacturing processes using laser powder bed fusion methods, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2020)
42.
Zurück zum Zitat Z. Yang et al. In-process data fusion for process monitoring and control of metal additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2021) Z. Yang et al. In-process data fusion for process monitoring and control of metal additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2021)
43.
Zurück zum Zitat D. Mies, W. Marsden, S. Warde, Overview of additive manufacturing informatics: “a digital thread”. Integr. Mater. Manuf. Innov. 5(1), 114–142 (2016)CrossRef D. Mies, W. Marsden, S. Warde, Overview of additive manufacturing informatics: “a digital thread”. Integr. Mater. Manuf. Innov. 5(1), 114–142 (2016)CrossRef
44.
Zurück zum Zitat C. Liu et al., Digital twin-enabled collaborative data management for metal additive manufacturing systems. J. Manuf. Syst. (2020) C. Liu et al., Digital twin-enabled collaborative data management for metal additive manufacturing systems. J. Manuf. Syst. (2020)
45.
Zurück zum Zitat S. Solorio-Fernández, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2020)CrossRef S. Solorio-Fernández, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2020)CrossRef
46.
Zurück zum Zitat S. Liu et al., Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Addit. Manuf. 39, 101877 (2021) S. Liu et al., Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Addit. Manuf. 39, 101877 (2021)
47.
Zurück zum Zitat S. Lee et al., Data analytics approach for melt-pool geometries in metal additive manufacturing. Sci. Technol. Adv. Mater. 20(1), 972–978 (2019)CrossRef S. Lee et al., Data analytics approach for melt-pool geometries in metal additive manufacturing. Sci. Technol. Adv. Mater. 20(1), 972–978 (2019)CrossRef
48.
Zurück zum Zitat Z. Zhang et al., Data-driven predictive modeling of tensile behavior of parts fabricated by cooperative 3d printing. J. Comput. Inf. Sci. Eng. 20(2), 021002 (2020)CrossRef Z. Zhang et al., Data-driven predictive modeling of tensile behavior of parts fabricated by cooperative 3d printing. J. Comput. Inf. Sci. Eng. 20(2), 021002 (2020)CrossRef
49.
Zurück zum Zitat J. Li et al., Multi-objective process parameters optimization of SLM using the ensemble of metamodels. J. Manuf. Process. 68, 198–209 (2021)CrossRef J. Li et al., Multi-objective process parameters optimization of SLM using the ensemble of metamodels. J. Manuf. Process. 68, 198–209 (2021)CrossRef
50.
Zurück zum Zitat T.-W. Chang et al., Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning. Int. J. Adv. Manuf. Technol. 114(9), 3177–3184 (2021)CrossRef T.-W. Chang et al., Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning. Int. J. Adv. Manuf. Technol. 114(9), 3177–3184 (2021)CrossRef
51.
Zurück zum Zitat Z. Li et al., Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput. Integr. Manuf. 57, 488–495 (2019)CrossRef Z. Li et al., Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput. Integr. Manuf. 57, 488–495 (2019)CrossRef
52.
Zurück zum Zitat Q. Wu et al., Residual stresses in wire-arc additive manufacturing–Hierarchy of influential variables. Addit. Manuf. 35, 101355 (2020) Q. Wu et al., Residual stresses in wire-arc additive manufacturing–Hierarchy of influential variables. Addit. Manuf. 35, 101355 (2020)
53.
Zurück zum Zitat S.L. Chan, Y. Lu, Y. Wang, Data-driven cost estimation for additive manufacturing in cybermanufacturing. J. Manuf. Syst. 46, 115–126 (2018)CrossRef S.L. Chan, Y. Lu, Y. Wang, Data-driven cost estimation for additive manufacturing in cybermanufacturing. J. Manuf. Syst. 46, 115–126 (2018)CrossRef
54.
Zurück zum Zitat M. Nixon, A. Aguado, Feature Extraction and Image Processing for Computer Vision (Academic Press, 2019) M. Nixon, A. Aguado, Feature Extraction and Image Processing for Computer Vision (Academic Press, 2019)
55.
Zurück zum Zitat I.T. Jolliffe, J. Cadima, Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)MathSciNetMATHCrossRef I.T. Jolliffe, J. Cadima, Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)MathSciNetMATHCrossRef
56.
Zurück zum Zitat Y. Gao et al., A review on recent advances in vision-based defect recognition towards industrial intelligence. J. Manuf. Syst. 62, 753–766 (2021) Y. Gao et al., A review on recent advances in vision-based defect recognition towards industrial intelligence. J. Manuf. Syst. 62, 753–766 (2021)
57.
Zurück zum Zitat B.L. DeCost et al., Computer vision and machine learning for autonomous characterization of am powder feedstocks. JOM 69(3), 456–465 (2017)CrossRef B.L. DeCost et al., Computer vision and machine learning for autonomous characterization of am powder feedstocks. JOM 69(3), 456–465 (2017)CrossRef
58.
Zurück zum Zitat L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 25, 151–165 (2019) L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 25, 151–165 (2019)
59.
Zurück zum Zitat L. Scime, J. Beuth, Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 19, 114–126 (2018) L. Scime, J. Beuth, Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 19, 114–126 (2018)
60.
Zurück zum Zitat D.J. Roach et al., Utilizing computer vision and artificial intelligence algorithms to predict and design the mechanical compression response of direct ink write 3D printed foam replacement structures. Addit. Manuf. 41, 101950 (2021) D.J. Roach et al., Utilizing computer vision and artificial intelligence algorithms to predict and design the mechanical compression response of direct ink write 3D printed foam replacement structures. Addit. Manuf. 41, 101950 (2021)
61.
Zurück zum Zitat T. Özel et al., Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int. J. Adv. Manuf. Technol. 94(9), 4451–4458 (2018)CrossRef T. Özel et al., Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int. J. Adv. Manuf. Technol. 94(9), 4451–4458 (2018)CrossRef
62.
Zurück zum Zitat Z. Zhang et al., Predicting flexural strength of additively manufactured continuous carbon fiber-reinforced polymer composites using machine learning. J. Comput. Inf. Sci. Eng. 20(6) (2020) Z. Zhang et al., Predicting flexural strength of additively manufactured continuous carbon fiber-reinforced polymer composites using machine learning. J. Comput. Inf. Sci. Eng. 20(6) (2020)
63.
Zurück zum Zitat X. Lin et al., Motion feature based melt pool monitoring for selective laser melting process. J. Mater. Process. Technol. 303, 117523 (2022)CrossRef X. Lin et al., Motion feature based melt pool monitoring for selective laser melting process. J. Mater. Process. Technol. 303, 117523 (2022)CrossRef
64.
Zurück zum Zitat B.D. Fulcher, M.A. Little, N.S. Jones, Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface 10(83), 20130048 (2013)CrossRef B.D. Fulcher, M.A. Little, N.S. Jones, Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface 10(83), 20130048 (2013)CrossRef
65.
Zurück zum Zitat G. Fahim, K. Amin, S. Zarif, Single-view 3D reconstruction: a survey of deep learning methods. Comput. Graph. 94, 164–190 (2021)CrossRef G. Fahim, K. Amin, S. Zarif, Single-view 3D reconstruction: a survey of deep learning methods. Comput. Graph. 94, 164–190 (2021)CrossRef
66.
Zurück zum Zitat M. Montazeri et al., In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Trans. 52(5), 500–515 (2020)CrossRef M. Montazeri et al., In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Trans. 52(5), 500–515 (2020)CrossRef
67.
Zurück zum Zitat T. Mativo, C. Fritz, I. Fidan, Cyber acoustic analysis of additively manufactured objects. Int. J. Adv. Manuf. Technol. 96(1), 581–586 (2018)CrossRef T. Mativo, C. Fritz, I. Fidan, Cyber acoustic analysis of additively manufactured objects. Int. J. Adv. Manuf. Technol. 96(1), 581–586 (2018)CrossRef
68.
Zurück zum Zitat K. Wasmer et al., In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach. J. Mater. Eng. Perform. 28(2), 666–672 (2019)CrossRef K. Wasmer et al., In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach. J. Mater. Eng. Perform. 28(2), 666–672 (2019)CrossRef
69.
Zurück zum Zitat R.M. Yazdi, F. Imani, H. Yang, A hybrid deep learning model of process-build interactions in additive manufacturing. J. Manuf. Syst. 57, 460–468 (2020) R.M. Yazdi, F. Imani, H. Yang, A hybrid deep learning model of process-build interactions in additive manufacturing. J. Manuf. Syst. 57, 460–468 (2020)
70.
Zurück zum Zitat B. Yuan et al., Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting, in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2019) B. Yuan et al., Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting, in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2019)
71.
Zurück zum Zitat X. Guan et al., 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med. Imag. 22(1), 1–18 (2022)CrossRef X. Guan et al., 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med. Imag. 22(1), 1–18 (2022)CrossRef
72.
73.
Zurück zum Zitat Y. Zhang, Y.F. Zhao, A web-based automated manufacturability analyzer and recommender for additive manufacturing (MAR-AM) via a hybrid machine learning model. Expert Syst. Appl. 199, 117189 (2022)CrossRef Y. Zhang, Y.F. Zhao, A web-based automated manufacturability analyzer and recommender for additive manufacturing (MAR-AM) via a hybrid machine learning model. Expert Syst. Appl. 199, 117189 (2022)CrossRef
74.
Zurück zum Zitat J. Li, B.M. Chen, G.H. Lee, So-net: self-organizing network for point cloud analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018) J. Li, B.M. Chen, G.H. Lee, So-net: self-organizing network for point cloud analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
75.
Zurück zum Zitat J. Masci et al., Geodesic convolutional neural networks on Riemannian manifolds, in Proceedings of the IEEE International Conference on Computer Vision Workshops (2015) J. Masci et al., Geodesic convolutional neural networks on Riemannian manifolds, in Proceedings of the IEEE International Conference on Computer Vision Workshops (2015)
76.
Zurück zum Zitat Z. Wu et al., 3D shapenets: a deep representation for volumetric shapes, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015) Z. Wu et al., 3D shapenets: a deep representation for volumetric shapes, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
77.
Zurück zum Zitat I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016) I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016)
78.
Zurück zum Zitat Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
79.
Zurück zum Zitat R. Salakhutdinov, G. Hinton, Learning a nonlinear embedding by preserving class neighbourhood structure, in Artificial Intelligence and Statistics (PMLR, 2007) R. Salakhutdinov, G. Hinton, Learning a nonlinear embedding by preserving class neighbourhood structure, in Artificial Intelligence and Statistics (PMLR, 2007)
80.
Zurück zum Zitat Y. Zhang et al., In situ monitoring plasma arc additive manufacturing process with a fully convolutional network. Int. J. Adv. Manuf. Technol. 120(3), 2247–2257 (2022)MathSciNetCrossRef Y. Zhang et al., In situ monitoring plasma arc additive manufacturing process with a fully convolutional network. Int. J. Adv. Manuf. Technol. 120(3), 2247–2257 (2022)MathSciNetCrossRef
81.
Zurück zum Zitat Y. Zhang et al., Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Trans. Industr. Inf. 16(9), 5769–5779 (2019)CrossRef Y. Zhang et al., Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Trans. Industr. Inf. 16(9), 5769–5779 (2019)CrossRef
82.
Zurück zum Zitat L. Scime, J. Beuth, A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018) L. Scime, J. Beuth, A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018)
83.
Zurück zum Zitat J. An, S. Cho, Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015) J. An, S. Cho, Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)
84.
Zurück zum Zitat S. Fathizadan, F. Ju, Y. Lu, Deep representation learning for process variation management in laser powder bed fusion. Addit. Manuf. 42, 101961 (2021) S. Fathizadan, F. Ju, Y. Lu, Deep representation learning for process variation management in laser powder bed fusion. Addit. Manuf. 42, 101961 (2021)
85.
Zurück zum Zitat C. Murphy et al., Using autoencoded voxel patterns to predict part mass, required support material, and build time, in 2018 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2018) C. Murphy et al., Using autoencoded voxel patterns to predict part mass, required support material, and build time, in 2018 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2018)
86.
Zurück zum Zitat X. Li et al., A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci. Rep. 8(1), 1–13 (2018) X. Li et al., A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci. Rep. 8(1), 1–13 (2018)
87.
Zurück zum Zitat T.J. Hagedorn, S. Krishnamurty, I.R. Grosse, A knowledge-based method for innovative design for additive manufacturing supported by modular ontologies. J. Comput. Inf. Sci. Eng. 18(2) (2018) T.J. Hagedorn, S. Krishnamurty, I.R. Grosse, A knowledge-based method for innovative design for additive manufacturing supported by modular ontologies. J. Comput. Inf. Sci. Eng. 18(2) (2018)
88.
Zurück zum Zitat B.-M. Roh et al., Ontology-based process map for metal additive manufacturing. J. Mater. Eng. Perform. 30(12), 8784–8797 (2021)CrossRef B.-M. Roh et al., Ontology-based process map for metal additive manufacturing. J. Mater. Eng. Perform. 30(12), 8784–8797 (2021)CrossRef
89.
Zurück zum Zitat Y. Xiong et al., A knowledge-based process planning framework for wire arc additive manufacturing. Adv. Eng. Inform. 45, 101135 (2020)CrossRef Y. Xiong et al., A knowledge-based process planning framework for wire arc additive manufacturing. Adv. Eng. Inform. 45, 101135 (2020)CrossRef
90.
Zurück zum Zitat D.B. Kim, An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments. J. Intell. Manuf. 30(4), 1999–2012 (2019)CrossRef D.B. Kim, An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments. J. Intell. Manuf. 30(4), 1999–2012 (2019)CrossRef
91.
Zurück zum Zitat H. Zhang et al., A knowledge transfer framework to support rapid process modeling in aerosol jet printing. Adv. Eng. Inform. 48, 101264 (2021)CrossRef H. Zhang et al., A knowledge transfer framework to support rapid process modeling in aerosol jet printing. Adv. Eng. Inform. 48, 101264 (2021)CrossRef
92.
Zurück zum Zitat H. Park et al., Collaborative knowledge management to identify data analytics opportunities in additive manufacturing. J. Intell. Manuf., 1–24 (2021) H. Park et al., Collaborative knowledge management to identify data analytics opportunities in additive manufacturing. J. Intell. Manuf., 1–24 (2021)
93.
Zurück zum Zitat M. Mozaffar et al., Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J. Mater. Process. Technol. 302, 117485 (2021) M. Mozaffar et al., Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J. Mater. Process. Technol. 302, 117485 (2021)
94.
Zurück zum Zitat G.I. Barenblatt, Scaling, vol. 34 (Cambridge University Press, 2003) G.I. Barenblatt, Scaling, vol. 34 (Cambridge University Press, 2003)
95.
Zurück zum Zitat S.C. Feng et al., Toward knowledge management for smart manufacturing. J. Comput. Inf. Sci. Eng. 17(3) (2017) S.C. Feng et al., Toward knowledge management for smart manufacturing. J. Comput. Inf. Sci. Eng. 17(3) (2017)
96.
Zurück zum Zitat M. Dinar, D.W. Rosen, A design for additive manufacturing ontology. J. Comput. Inf. Sci. Eng. 17(2) (2017) M. Dinar, D.W. Rosen, A design for additive manufacturing ontology. J. Comput. Inf. Sci. Eng. 17(2) (2017)
97.
Zurück zum Zitat A.E. Gongora et al., A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6(15), eaaz1708 (2020) A.E. Gongora et al., A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6(15), eaaz1708 (2020)
98.
Zurück zum Zitat R. Li et al., Geometrical defect detection on additive manufacturing parts with curvature feature and machine learning. Int. J. Adv. Manuf. Technol. 120(5), 3719–3729 (2022)MathSciNetCrossRef R. Li et al., Geometrical defect detection on additive manufacturing parts with curvature feature and machine learning. Int. J. Adv. Manuf. Technol. 120(5), 3719–3729 (2022)MathSciNetCrossRef
99.
Zurück zum Zitat H. Ko et al., Machine learning and knowledge graph based design rule construction for additive manufacturing. Addit. Manuf. 37, 101620 (2021) H. Ko et al., Machine learning and knowledge graph based design rule construction for additive manufacturing. Addit. Manuf. 37, 101620 (2021)
100.
Zurück zum Zitat Y. Mallet, O. Vel, D. Coomans, Integrated feature extraction using adaptive wavelets, in Feature Extraction, Construction and Selection (Springer, 1998), pp. 175–189 Y. Mallet, O. Vel, D. Coomans, Integrated feature extraction using adaptive wavelets, in Feature Extraction, Construction and Selection (Springer, 1998), pp. 175–189
101.
Zurück zum Zitat Y. Yang, M. He, L. Li, Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. J. Clean. Prod. 251, 119710 (2020)CrossRef Y. Yang, M. He, L. Li, Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. J. Clean. Prod. 251, 119710 (2020)CrossRef
102.
Zurück zum Zitat W. Xing et al., Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process. J. Manuf. Process. 74, 486–499 (2022)CrossRef W. Xing et al., Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process. J. Manuf. Process. 74, 486–499 (2022)CrossRef
103.
Zurück zum Zitat R.R. Selvaraju et al., Grad-CAM: visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE International Conference on Computer Vision (2017) R.R. Selvaraju et al., Grad-CAM: visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE International Conference on Computer Vision (2017)
104.
Zurück zum Zitat H. Lee et al., Deep learning for in-situ powder stream fault detection in directed energy deposition process. J. Manuf. Syst. 62, 575–587 (2022)CrossRef H. Lee et al., Deep learning for in-situ powder stream fault detection in directed energy deposition process. J. Manuf. Syst. 62, 575–587 (2022)CrossRef
Metadaten
Titel
Feature Engineering in Additive Manufacturing
verfasst von
Mutahar Safdar
Guy Lamouche
Padma Polash Paul
Gentry Wood
Yaoyao Fiona Zhao
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-32154-2_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.