Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Mutahar Safdar, Guy Lamouche, Padma Polash Paul, Gentry Wood, Yaoyao Fiona Zhao

Erschienen in: Engineering of Additive Manufacturing Features for Data-Driven Solutions

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces additive manufacturing (AM) in terms of its merits and maturity. The status of data-driven AM research is evaluated in terms of existing reviews. The significance of feature engineering in AM is explained. Finally, the methodology used to collect literature is explained toward the end.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
MJ and SL are other AM techniques which could be used to manufacture metallic parts.
 
2
Big data is usually categorized based on its volume, velocity, variability, variety, and value.
 
3
The featurization levels have been explained in the subsequent text.
 
4
Synonymous of “variable” or “attribute”.
 
Literatur
1.
Zurück zum Zitat I. Gibson et al., Additive Manufacturing Technologies, vol. 17 (Springer, 2021) I. Gibson et al., Additive Manufacturing Technologies, vol. 17 (Springer, 2021)
2.
Zurück zum Zitat M. Mehrpouya et al., The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl. Sci. 9(18), 3865 (2019) M. Mehrpouya et al., The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl. Sci. 9(18), 3865 (2019)
3.
Zurück zum Zitat W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef
4.
Zurück zum Zitat N. Johnson et al., Invited review: machine learning for materials developments in metals additive manufacturing. Addit. Manuf. 36, 101641 (2020) N. Johnson et al., Invited review: machine learning for materials developments in metals additive manufacturing. Addit. Manuf. 36, 101641 (2020)
5.
Zurück zum Zitat ASTM, Additive Manufacturing—General Principles—Fundamentals and Vocabulary (American Society of Testing Materials, 2022) ASTM, Additive Manufacturing—General Principles—Fundamentals and Vocabulary (American Society of Testing Materials, 2022)
6.
Zurück zum Zitat B. Blakey-Milner et al., Metal additive manufacturing in aerospace: a review. Mater. Des. 209, 110008 (2021)CrossRef B. Blakey-Milner et al., Metal additive manufacturing in aerospace: a review. Mater. Des. 209, 110008 (2021)CrossRef
8.
Zurück zum Zitat A. Paolini, S. Kollmannsberger, E. Rank, Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit. Manuf. 30, 100894 (2019) A. Paolini, S. Kollmannsberger, E. Rank, Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit. Manuf. 30, 100894 (2019)
9.
Zurück zum Zitat C. Sun et al., Additive manufacturing for energy: a review. Appl. Energy 282, 116041 (2021)CrossRef C. Sun et al., Additive manufacturing for energy: a review. Appl. Energy 282, 116041 (2021)CrossRef
10.
Zurück zum Zitat K. Zhu, J.Y.H. Fuh, X. Lin, Metal-based additive manufacturing condition monitoring: a review on machine learning based approaches. IEEE/ASME Trans. Mechatron. 27(5), 2495–2510 (2021) K. Zhu, J.Y.H. Fuh, X. Lin, Metal-based additive manufacturing condition monitoring: a review on machine learning based approaches. IEEE/ASME Trans. Mechatron. 27(5), 2495–2510 (2021)
11.
Zurück zum Zitat A. Oleff et al., Process monitoring for material extrusion additive manufacturing: a state-of-the-art review. Progr. Addit. Manuf., 1–26 (2021) A. Oleff et al., Process monitoring for material extrusion additive manufacturing: a state-of-the-art review. Progr. Addit. Manuf., 1–26 (2021)
12.
Zurück zum Zitat Z. Luo, Y. Zhao, A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Addit. Manuf. 21, 318–332 (2018) Z. Luo, Y. Zhao, A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Addit. Manuf. 21, 318–332 (2018)
13.
Zurück zum Zitat X. Guan, Y.F. Zhao, Modeling of the laser powder–based directed energy deposition process for additive manufacturing: a review. Int. J. Adv. Manuf. Technol. 107(5), 1959–1982 (2020)CrossRef X. Guan, Y.F. Zhao, Modeling of the laser powder–based directed energy deposition process for additive manufacturing: a review. Int. J. Adv. Manuf. Technol. 107(5), 1959–1982 (2020)CrossRef
14.
Zurück zum Zitat M.M. Francois et al., Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21(4), 198–206 (2017)CrossRef M.M. Francois et al., Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21(4), 198–206 (2017)CrossRef
15.
Zurück zum Zitat J. Qin et al., Research and application of machine learning for additive manufacturing. Addit. Manuf. 52, 102691 (2022) J. Qin et al., Research and application of machine learning for additive manufacturing. Addit. Manuf. 52, 102691 (2022)
16.
Zurück zum Zitat C.M. Bishop, N.M. Nasrabadi, Pattern Recognition and Machine Learning, vol. 4 (Springer, 2006) C.M. Bishop, N.M. Nasrabadi, Pattern Recognition and Machine Learning, vol. 4 (Springer, 2006)
17.
Zurück zum Zitat Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015) Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
18.
Zurück zum Zitat W.Y. Wang et al., Integrated computational materials engineering for advanced materials: a brief review. Comput. Mater. Sci. 158, 42–48 (2019)CrossRef W.Y. Wang et al., Integrated computational materials engineering for advanced materials: a brief review. Comput. Mater. Sci. 158, 42–48 (2019)CrossRef
19.
Zurück zum Zitat S. Sagiroglu, D. Sinanc, Big data: a review, in 2013 International Conference on Collaboration Technologies and Systems (CTS) (IEEE, 2013) S. Sagiroglu, D. Sinanc, Big data: a review, in 2013 International Conference on Collaboration Technologies and Systems (CTS) (IEEE, 2013)
20.
Zurück zum Zitat D. Kochkov et al., Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118(21), e2101784118 (2021)MathSciNetCrossRef D. Kochkov et al., Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118(21), e2101784118 (2021)MathSciNetCrossRef
21.
Zurück zum Zitat A. Phua, C. Davies, G. Delaney, A digital twin hierarchy for metal additive manufacturing. Comput. Ind. 140, 103667 (2022)CrossRef A. Phua, C. Davies, G. Delaney, A digital twin hierarchy for metal additive manufacturing. Comput. Ind. 140, 103667 (2022)CrossRef
22.
Zurück zum Zitat Q. Zhu, Z. Liu, J. Yan, Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput. Mech. 67(2), 619–635 (2021)MathSciNetMATHCrossRef Q. Zhu, Z. Liu, J. Yan, Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput. Mech. 67(2), 619–635 (2021)MathSciNetMATHCrossRef
23.
Zurück zum Zitat M. Mozaffar et al., Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J. Mater. Process. Technol. 302, 117485 (2021) M. Mozaffar et al., Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J. Mater. Process. Technol. 302, 117485 (2021)
24.
Zurück zum Zitat S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef
25.
Zurück zum Zitat C. Muthiah et al., Application of machine learning in fused deposition modeling: a review, in AIP Conference Proceedings (AIP Publishing LLC, 2022) C. Muthiah et al., Application of machine learning in fused deposition modeling: a review, in AIP Conference Proceedings (AIP Publishing LLC, 2022)
26.
Zurück zum Zitat X. Lin et al., Metal-based additive manufacturing condition monitoring methods: from measurement to control. ISA Trans. 120, 147–166 (2022)CrossRef X. Lin et al., Metal-based additive manufacturing condition monitoring methods: from measurement to control. ISA Trans. 120, 147–166 (2022)CrossRef
27.
Zurück zum Zitat B. Wu et al., In situ monitoring methods for selective laser melting additive manufacturing process based on images—a review. China Foundry 18(4), 265–285 (2021)CrossRef B. Wu et al., In situ monitoring methods for selective laser melting additive manufacturing process based on images—a review. China Foundry 18(4), 265–285 (2021)CrossRef
28.
Zurück zum Zitat M. Valizadeh, S.J. Wolff, Convolutional Neural Network applications in additive manufacturing: a review. Adv. Ind. Manuf. Eng. 4, 100072 (2022) M. Valizadeh, S.J. Wolff, Convolutional Neural Network applications in additive manufacturing: a review. Adv. Ind. Manuf. Eng. 4, 100072 (2022)
29.
Zurück zum Zitat C. Tian et al., Data-driven approaches toward smarter additive manufacturing. Adv. Intell. Syst. 3(12), 2100014 (2021)CrossRef C. Tian et al., Data-driven approaches toward smarter additive manufacturing. Adv. Intell. Syst. 3(12), 2100014 (2021)CrossRef
30.
Zurück zum Zitat L. Meng et al., Machine learning in additive manufacturing: a review. JOM 72(6), 2363–2377 (2020)CrossRef L. Meng et al., Machine learning in additive manufacturing: a review. JOM 72(6), 2363–2377 (2020)CrossRef
31.
Zurück zum Zitat Z. Wang et al., Data-driven modeling of process, structure and property in additive manufacturing: a review and future directions. J. Manuf. Process. 77, 13–31 (2022)CrossRef Z. Wang et al., Data-driven modeling of process, structure and property in additive manufacturing: a review and future directions. J. Manuf. Process. 77, 13–31 (2022)CrossRef
32.
Zurück zum Zitat X. Qi et al., Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5(4), 721–729 (2019)CrossRef X. Qi et al., Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5(4), 721–729 (2019)CrossRef
33.
Zurück zum Zitat M. Joshi et al., Applications of supervised machine learning algorithms in additive manufacturing: a review, in 2019 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2019) M. Joshi et al., Applications of supervised machine learning algorithms in additive manufacturing: a review, in 2019 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2019)
34.
Zurück zum Zitat Y. Zhang, M. Safdar, J. Xie, J. Li, M. Sage, Y.F. Zhao, A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management. J. Intell. Manuf., 1–36 (2022) Y. Zhang, M. Safdar, J. Xie, J. Li, M. Sage, Y.F. Zhao, A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management. J. Intell. Manuf., 1–36 (2022)
35.
Zurück zum Zitat P. Sreeraj, S.K. Mishra, P.K. Singh, A review on non-destructive evaluation and characterization of additively manufactured components. Progr. Addit. Manuf., 1–24 (2021) P. Sreeraj, S.K. Mishra, P.K. Singh, A review on non-destructive evaluation and characterization of additively manufactured components. Progr. Addit. Manuf., 1–24 (2021)
36.
Zurück zum Zitat Y. Fu et al., Machine learning algorithms for defect detection in metal laser-based additive manufacturing: a review. J. Manuf. Process. 75, 693–710 (2022)CrossRef Y. Fu et al., Machine learning algorithms for defect detection in metal laser-based additive manufacturing: a review. J. Manuf. Process. 75, 693–710 (2022)CrossRef
37.
Zurück zum Zitat S. Guo et al., Machine learning for metal additive manufacturing: towards a physics-informed data-driven paradigm. J. Manuf. Syst. 62, 145–163 (2022)CrossRef S. Guo et al., Machine learning for metal additive manufacturing: towards a physics-informed data-driven paradigm. J. Manuf. Syst. 62, 145–163 (2022)CrossRef
38.
Zurück zum Zitat Y. Zhang, W. Yan, Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges. J. Intell. Manuf., 1–24 (2022) Y. Zhang, W. Yan, Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges. J. Intell. Manuf., 1–24 (2022)
39.
Zurück zum Zitat M.D. Xames, F.K. Torsha, F. Sarwar, A systematic literature review on recent trends of machine learning applications in additive manufacturing. J. Intell. Manuf., 1–27 (2022) M.D. Xames, F.K. Torsha, F. Sarwar, A systematic literature review on recent trends of machine learning applications in additive manufacturing. J. Intell. Manuf., 1–27 (2022)
40.
Zurück zum Zitat F.G. Cunha, T.G. Santos, J. Xavier, In situ monitoring of additive manufacturing using digital image correlation: a review. Materials 14(6), 1511 (2021)CrossRef F.G. Cunha, T.G. Santos, J. Xavier, In situ monitoring of additive manufacturing using digital image correlation: a review. Materials 14(6), 1511 (2021)CrossRef
41.
Zurück zum Zitat D. Chen et al., Research on in situ monitoring of selective laser melting: a state of the art review. Int. J. Adv. Manuf. Technol. 113(11), 3121–3138 (2021)CrossRef D. Chen et al., Research on in situ monitoring of selective laser melting: a state of the art review. Int. J. Adv. Manuf. Technol. 113(11), 3121–3138 (2021)CrossRef
42.
Zurück zum Zitat X. Chen et al., A review on wire-arc additive manufacturing: typical defects, detection approaches, and multisensor data fusion-based model. Int. J. Adv. Manuf. Technol. 117(3), 707–727 (2021)CrossRef X. Chen et al., A review on wire-arc additive manufacturing: typical defects, detection approaches, and multisensor data fusion-based model. Int. J. Adv. Manuf. Technol. 117(3), 707–727 (2021)CrossRef
43.
Zurück zum Zitat S. Usha, In situ monitoring of metal additive manufacturing process: a review. Addit. Manuf., 275–299 (2021) S. Usha, In situ monitoring of metal additive manufacturing process: a review. Addit. Manuf., 275–299 (2021)
44.
Zurück zum Zitat R. McCann et al., In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit. Manuf. 45, 102058 (2021) R. McCann et al., In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit. Manuf. 45, 102058 (2021)
45.
Zurück zum Zitat J. Lee et al., Review on quality control methods in metal additive manufacturing. Appl. Sci. 11(4), 1966 (2021)CrossRef J. Lee et al., Review on quality control methods in metal additive manufacturing. Appl. Sci. 11(4), 1966 (2021)CrossRef
46.
Zurück zum Zitat D. Mahmoud et al., Applications of machine learning in process monitoring and controls of L-PBF additive manufacturing: a review. Appl. Sci. 11(24), 11910 (2021) D. Mahmoud et al., Applications of machine learning in process monitoring and controls of L-PBF additive manufacturing: a review. Appl. Sci. 11(24), 11910 (2021)
47.
Zurück zum Zitat G.D. Goh, S.L. Sing, W.Y. Yeong, A review on machine learning in 3D printing: applications, potential, and challenges. Artif. Intell. Rev. 54(1), 63–94 (2021)CrossRef G.D. Goh, S.L. Sing, W.Y. Yeong, A review on machine learning in 3D printing: applications, potential, and challenges. Artif. Intell. Rev. 54(1), 63–94 (2021)CrossRef
48.
Zurück zum Zitat S. Nasiri, M.R. Khosravani, Machine learning in predicting mechanical behavior of additively manufactured parts. J. Mater. Res. Technol. 14, 1137–1153 (2021) S. Nasiri, M.R. Khosravani, Machine learning in predicting mechanical behavior of additively manufactured parts. J. Mater. Res. Technol. 14, 1137–1153 (2021)
49.
Zurück zum Zitat K. Bartsch et al., On the digital twin application and the role of artificial intelligence in additive manufacturing: a systematic review. J. Phys. Mater. 4(3), 032005 (2021)CrossRef K. Bartsch et al., On the digital twin application and the role of artificial intelligence in additive manufacturing: a systematic review. J. Phys. Mater. 4(3), 032005 (2021)CrossRef
50.
Zurück zum Zitat S. Sing et al., Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys. Prototyp. 16(3), 372–386 (2021)CrossRef S. Sing et al., Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys. Prototyp. 16(3), 372–386 (2021)CrossRef
51.
Zurück zum Zitat A. Omairi, Z.H. Ismail, Towards machine learning for error compensation in additive manufacturing. Appl. Sci. 11(5), 2375 (2021)CrossRef A. Omairi, Z.H. Ismail, Towards machine learning for error compensation in additive manufacturing. Appl. Sci. 11(5), 2375 (2021)CrossRef
52.
Zurück zum Zitat Y. Wang et al., Smart additive manufacturing: current artificial intelligence-enabled methods and future perspectives. Sci. China Technol. Sci. 63(9), 1600–1611 (2020)CrossRef Y. Wang et al., Smart additive manufacturing: current artificial intelligence-enabled methods and future perspectives. Sci. China Technol. Sci. 63(9), 1600–1611 (2020)CrossRef
53.
Zurück zum Zitat M.S. Hossain, H. Taheri, In situ process monitoring for additive manufacturing through acoustic techniques. J. Mater. Eng. Perform. 29(10), 6249–6262 (2020)CrossRef M.S. Hossain, H. Taheri, In situ process monitoring for additive manufacturing through acoustic techniques. J. Mater. Eng. Perform. 29(10), 6249–6262 (2020)CrossRef
54.
Zurück zum Zitat C. Wang et al., Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit. Manuf. 36, 101538 (2020) C. Wang et al., Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit. Manuf. 36, 101538 (2020)
55.
Zurück zum Zitat A.H. Moltumyr, M.H. Arbo, J.T. Gravdahl, Towards vision-based closed-loop additive manufacturing: a review, in 2020 3rd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (IEEE, 2020) A.H. Moltumyr, M.H. Arbo, J.T. Gravdahl, Towards vision-based closed-loop additive manufacturing: a review, in 2020 3rd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (IEEE, 2020)
56.
Zurück zum Zitat Z.-J. Tang et al., A review on in situ monitoring technology for directed energy deposition of metals. Int. J. Adv. Manuf. Technol. 108(11), 3437–3463 (2020)CrossRef Z.-J. Tang et al., A review on in situ monitoring technology for directed energy deposition of metals. Int. J. Adv. Manuf. Technol. 108(11), 3437–3463 (2020)CrossRef
57.
Zurück zum Zitat L. Zhang et al., Digital twins for additive manufacturing: a state-of-the-art review. Appl. Sci. 10(23), 8350 (2020)CrossRef L. Zhang et al., Digital twins for additive manufacturing: a state-of-the-art review. Appl. Sci. 10(23), 8350 (2020)CrossRef
58.
Zurück zum Zitat P. Charalampous, I. Kostavelis, D. Tzovaras, Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyp. J. 26(4), 777–790 (2020) P. Charalampous, I. Kostavelis, D. Tzovaras, Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyp. J. 26(4), 777–790 (2020)
59.
Zurück zum Zitat Z. Jin et al., Machine learning for advanced additive manufacturing. Matter 3(5), 1541–1556 (2020)CrossRef Z. Jin et al., Machine learning for advanced additive manufacturing. Matter 3(5), 1541–1556 (2020)CrossRef
60.
Zurück zum Zitat W. He et al., In-situ monitoring and deformation characterization by optical techniques; part I: laser-aided direct metal deposition for additive manufacturing. Opt. Lasers Eng. 122, 74–88 (2019)CrossRef W. He et al., In-situ monitoring and deformation characterization by optical techniques; part I: laser-aided direct metal deposition for additive manufacturing. Opt. Lasers Eng. 122, 74–88 (2019)CrossRef
61.
Zurück zum Zitat S.S. Razvi et al., A review of machine learning applications in additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2019) S.S. Razvi et al., A review of machine learning applications in additive manufacturing, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2019)
62.
Zurück zum Zitat Z. Jiang, J. Wang, Research status of on-line monitoring of laser metal deposition. IOP Conf. Ser. Mater. Sci. Eng. 605(1):012020 Z. Jiang, J. Wang, Research status of on-line monitoring of laser metal deposition. IOP Conf. Ser. Mater. Sci. Eng. 605(1):012020
63.
Zurück zum Zitat D. Huang, H. Li, Review of machine learning applications in powder bed fusion technology for part production. Proc. Int. Conf. Prog. Addit. Manuf. (2018) D. Huang, H. Li, Review of machine learning applications in powder bed fusion technology for part production. Proc. Int. Conf. Prog. Addit. Manuf. (2018)
64.
Zurück zum Zitat M.O. Alabi, K. Nixon, I. Botef, A survey on recent applications of machine learning with big data in additive manufacturing industry. Am. J. Eng. Appl. Sci. 11(3) (2018) M.O. Alabi, K. Nixon, I. Botef, A survey on recent applications of machine learning with big data in additive manufacturing industry. Am. J. Eng. Appl. Sci. 11(3) (2018)
65.
Zurück zum Zitat J. Yang et al., Survey on artificial intelligence for additive manufacturing, in 2017 23rd International Conference on Automation and Computing (ICAC) (IEEE, 2017) J. Yang et al., Survey on artificial intelligence for additive manufacturing, in 2017 23rd International Conference on Automation and Computing (ICAC) (IEEE, 2017)
66.
Zurück zum Zitat Z.Y. Chua, I.H. Ahn, S.K. Moon, Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int. J. Precis. Eng. Manuf. Green Technol. 4(2), 235–245 (2017)CrossRef Z.Y. Chua, I.H. Ahn, S.K. Moon, Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int. J. Precis. Eng. Manuf. Green Technol. 4(2), 235–245 (2017)CrossRef
67.
Zurück zum Zitat W.-W. Liu et al., A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing. Proc. CIRP 61, 235–240 (2017)CrossRef W.-W. Liu et al., A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing. Proc. CIRP 61, 235–240 (2017)CrossRef
68.
Zurück zum Zitat M. Mani et al., A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int. J. Prod. Res. 55(5), 1400–1418 (2017)CrossRef M. Mani et al., A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int. J. Prod. Res. 55(5), 1400–1418 (2017)CrossRef
69.
Zurück zum Zitat S.K. Everton et al., Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef S.K. Everton et al., Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef
70.
Zurück zum Zitat T.G. Spears, S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 5(1), 16–40 (2016)CrossRef T.G. Spears, S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 5(1), 16–40 (2016)CrossRef
71.
Zurück zum Zitat E.W. Reutzel, A.R. Nassar, A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyp. J. 21(2):159–167 (2015) E.W. Reutzel, A.R. Nassar, A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyp. J. 21(2):159–167 (2015)
72.
Zurück zum Zitat G. Tapia, A. Elwany, A review on process monitoring and control in metal-based additive manufacturing. J. Manuf. Sci. Eng. 136(6) (2014) G. Tapia, A. Elwany, A review on process monitoring and control in metal-based additive manufacturing. J. Manuf. Sci. Eng. 136(6) (2014)
73.
Zurück zum Zitat P. Yadav et al., Inline drift detection using monitoring systems and machine learning in selective laser melting. Adv. Eng. Mater. 22(12), 2000660 (2020)CrossRef P. Yadav et al., Inline drift detection using monitoring systems and machine learning in selective laser melting. Adv. Eng. Mater. 22(12), 2000660 (2020)CrossRef
74.
Zurück zum Zitat J. Ling et al., Building data-driven models with microstructural images: generalization and interpretability. Mater. Discov. 10, 19–28 (2017)CrossRef J. Ling et al., Building data-driven models with microstructural images: generalization and interpretability. Mater. Discov. 10, 19–28 (2017)CrossRef
75.
Zurück zum Zitat A. Zheng, A. Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (O’Reilly Media, Inc., 2018) A. Zheng, A. Casari, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists (O’Reilly Media, Inc., 2018)
76.
Zurück zum Zitat G.X. Gu et al., Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5(5), 939–945 (2018)CrossRef G.X. Gu et al., Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5(5), 939–945 (2018)CrossRef
77.
Zurück zum Zitat L. Wang et al., Data-driven topology optimization with multiclass microstructures using latent variable Gaussian process. J. Mech. Des. 143(3) (2020) L. Wang et al., Data-driven topology optimization with multiclass microstructures using latent variable Gaussian process. J. Mech. Des. 143(3) (2020)
78.
Zurück zum Zitat X. Lin et al., Motion feature based melt pool monitoring for selective laser melting process. J. Mater. Process. Technol. 303, 117523 (2022)CrossRef X. Lin et al., Motion feature based melt pool monitoring for selective laser melting process. J. Mater. Process. Technol. 303, 117523 (2022)CrossRef
79.
Zurück zum Zitat X. Zhao et al., Automated anomaly detection of laser-based additive manufacturing using melt pool sparse representation and unsupervised learning, in 2021 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2021) X. Zhao et al., Automated anomaly detection of laser-based additive manufacturing using melt pool sparse representation and unsupervised learning, in 2021 International Solid Freeform Fabrication Symposium (University of Texas at Austin, 2021)
80.
Zurück zum Zitat D. Rose et al., Automated semantic segmentation of NiCrBSi-WC optical microscopy images using convolutional neural networks. Comput. Mater. Sci. 210, 111391 (2022)CrossRef D. Rose et al., Automated semantic segmentation of NiCrBSi-WC optical microscopy images using convolutional neural networks. Comput. Mater. Sci. 210, 111391 (2022)CrossRef
81.
Zurück zum Zitat Z. Li et al., Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput. Integr. Manuf. 57, 488–495 (2019)CrossRef Z. Li et al., Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot. Comput. Integr. Manuf. 57, 488–495 (2019)CrossRef
82.
Zurück zum Zitat S.L. Chan, Y. Lu, Y. Wang, Data-driven cost estimation for additive manufacturing in cybermanufacturing. J. Manuf. Syst. 46, 115–126 (2018)CrossRef S.L. Chan, Y. Lu, Y. Wang, Data-driven cost estimation for additive manufacturing in cybermanufacturing. J. Manuf. Syst. 46, 115–126 (2018)CrossRef
83.
Zurück zum Zitat D.B. Kim et al., Streamlining the additive manufacturing digital spectrum: a systems approach. Addit. Manuf. 5, 20–30 (2015) D.B. Kim et al., Streamlining the additive manufacturing digital spectrum: a systems approach. Addit. Manuf. 5, 20–30 (2015)
84.
Zurück zum Zitat M. Schotten et al., A brief history of Scopus: the world’s largest abstract and citation database of scientific literature, in Research Analytics (Auerbach Publications, 2017), pp. 31–58 M. Schotten et al., A brief history of Scopus: the world’s largest abstract and citation database of scientific literature, in Research Analytics (Auerbach Publications, 2017), pp. 31–58
Metadaten
Titel
Introduction
verfasst von
Mutahar Safdar
Guy Lamouche
Padma Polash Paul
Gentry Wood
Yaoyao Fiona Zhao
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-32154-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.