Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2016

13.07.2016

FEM Simulation and Experimental Validation of LBW Under Conduction Regime of Ti6Al4V Alloy

verfasst von: C. Churiaque, M. R. Amaya-Vazquez, F. J. Botana, J. M. Sánchez-Amaya

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser Beam Welding (LBW) is an advanced process to join materials with a laser beam of high energy density. LBW is especially suitable to join titanium alloys, as it allows high localization and low size of the melting pool, reducing considerably the energy of the process, in comparison with other welding technologies. Among the two widely known welding regimes, conduction and keyhole, the former is claimed to be a viable alternative to keyhole, mainly because it is a very stable process, provides high-quality welds free of defects, and involves lower laser cost. In the present work, a Finite Element Method (FEM) has been developed to simulate the LBW of Ti6Al4V alloy under conduction regime. The “Goldak double ellipsoid model” has been taken for the first time to simulate this LBW conduction process. In order to refine and validate the model, experimental conduction welding tests were performed on Ti6Al4V pieces with a high-power diode laser. Microstructural analyses and hardness measurements were also performed on the laser weld beads to identify the generated phases. Distortion and residual stresses were also obtained from the FEM simulations. An excellent agreement between the simulation and experimental results was found regarding the bead morphology and phase transformations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Katayama, Chapter 1 Introduction: Fundamentals of Laser Welding, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Osaka, 2013,CrossRef S. Katayama, Chapter 1 Introduction: Fundamentals of Laser Welding, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Osaka, 2013,CrossRef
2.
Zurück zum Zitat C. Bertrand, O. Laplanche, J.P. Rocca, Y. Le Petitcorps, and S. Nammour, Effect of the Combination of Different Welding Parameters on Melting Characteristics of Grade 1 Titanium with a Pulsed Nd–Yag Laser, Lasers Med. Sci., 2007, 22, p 237–244CrossRef C. Bertrand, O. Laplanche, J.P. Rocca, Y. Le Petitcorps, and S. Nammour, Effect of the Combination of Different Welding Parameters on Melting Characteristics of Grade 1 Titanium with a Pulsed Nd–Yag Laser, Lasers Med. Sci., 2007, 22, p 237–244CrossRef
3.
Zurück zum Zitat J.M. Sanchez-Amaya, M.R. Amaya Vázquez, and F.J. Botana, Chapter 8: Laser Welding of Light Metal Alloys: Aluminium and Titanium Alloys, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Japan, 2013, J.M. Sanchez-Amaya, M.R. Amaya Vázquez, and F.J. Botana, Chapter 8: Laser Welding of Light Metal Alloys: Aluminium and Titanium Alloys, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Japan, 2013,
4.
Zurück zum Zitat J.M. Sánchez-Amaya, M.R. Amaya-Vázquez, L. González-Rovira, M. Botana-Galvín, and F.J. Botana, Influence of Surface Pre-treatments on Laser Welding of Ti6Al4V Alloy, J. Mater. Eng. Perform., 2014, 23(5), p 1568–1575CrossRef J.M. Sánchez-Amaya, M.R. Amaya-Vázquez, L. González-Rovira, M. Botana-Galvín, and F.J. Botana, Influence of Surface Pre-treatments on Laser Welding of Ti6Al4V Alloy, J. Mater. Eng. Perform., 2014, 23(5), p 1568–1575CrossRef
5.
Zurück zum Zitat A. Costa, R. Miranda, L. Quintino, and D. Yapp, Analysis of Beam Material Interaction in Welding of Titanium with Fiber Lasers, Mater. Manuf. Process., 2007, 22, p 798–803CrossRef A. Costa, R. Miranda, L. Quintino, and D. Yapp, Analysis of Beam Material Interaction in Welding of Titanium with Fiber Lasers, Mater. Manuf. Process., 2007, 22, p 798–803CrossRef
6.
Zurück zum Zitat G. Lütjering and J.C. Williams, Titanium, 2nd ed., Springer, New York, 2007, p 16 G. Lütjering and J.C. Williams, Titanium, 2nd ed., Springer, New York, 2007, p 16
7.
Zurück zum Zitat J.F. Ready and D.F. Farson, LIA Handbook of Laser Materials Processing, Laser Institute of America, Orlando, 2001 J.F. Ready and D.F. Farson, LIA Handbook of Laser Materials Processing, Laser Institute of America, Orlando, 2001
8.
Zurück zum Zitat M. Bass, Laser Materials Processing, Elsevier, New York, 1983 M. Bass, Laser Materials Processing, Elsevier, New York, 1983
9.
Zurück zum Zitat M.S.F., Lima, R. Riva, A.C. De Oliveira, and G.R. Siqueira, Laser Beam Welding Aerospace Aluminum Using Fiber Lasers, in Proceedings of SPIE—The International Society for Optical Engineering, Lisbon, 2009 M.S.F., Lima, R. Riva, A.C. De Oliveira, and G.R. Siqueira, Laser Beam Welding Aerospace Aluminum Using Fiber Lasers, in Proceedings of SPIEThe International Society for Optical Engineering, Lisbon, 2009
10.
Zurück zum Zitat A.G. Paleocrassas and J.F. Tu, Inherent Instability Investigation for Low Speed Laser Welding of Aluminum Using a Single-Mode Fiber Laser, J. Mater. Process. Technol., 2010, 210(10), p 1411–1418CrossRef A.G. Paleocrassas and J.F. Tu, Inherent Instability Investigation for Low Speed Laser Welding of Aluminum Using a Single-Mode Fiber Laser, J. Mater. Process. Technol., 2010, 210(10), p 1411–1418CrossRef
11.
Zurück zum Zitat I. Eriksson, and A.F.H. Kaplan, Evaluation of Laser Weld Monitoring—A Case Study, in ICALEO 2009—28th International Congress on Applications of Lasers and Electro-Optics, Congress Proceedings. Orlando, 2009 I. Eriksson, and A.F.H. Kaplan, Evaluation of Laser Weld Monitoring—A Case Study, in ICALEO 200928th International Congress on Applications of Lasers and Electro-Optics, Congress Proceedings. Orlando, 2009
12.
Zurück zum Zitat L. Quintino and E. Assunçao, Chapter 6: Conduction Laser Welding, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Osaka, 2013, L. Quintino and E. Assunçao, Chapter 6: Conduction Laser Welding, Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials No. 41, S. Katayama, Ed., Osaka University, Osaka, 2013,
13.
Zurück zum Zitat J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Butterworth-Heinemann, Oxford, 2005 J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Butterworth-Heinemann, Oxford, 2005
14.
Zurück zum Zitat W.M. Steen, Laser Material Processing, 3rd ed., Springer, New York, 2003CrossRef W.M. Steen, Laser Material Processing, 3rd ed., Springer, New York, 2003CrossRef
15.
Zurück zum Zitat S. Nakamura, M. Sakurai, K. Kamimuki, T. Inoue, and Y. Ito, Detection Technique for Transition Between Deep Penetration Mode and Shallow Penetration Mode in CO2 Laser Welding of Metals, J. Phys. D Appl. Phys., 2000, 33(22), p 2941–2948CrossRef S. Nakamura, M. Sakurai, K. Kamimuki, T. Inoue, and Y. Ito, Detection Technique for Transition Between Deep Penetration Mode and Shallow Penetration Mode in CO2 Laser Welding of Metals, J. Phys. D Appl. Phys., 2000, 33(22), p 2941–2948CrossRef
16.
Zurück zum Zitat P. Okon, G. Dearden, K. Watkins, M. Sharp, and P. French, Laser Welding of Aluminium Alloy 5083, in ICALEO 2002—21st International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, Scottsdale, 2002 P. Okon, G. Dearden, K. Watkins, M. Sharp, and P. French, Laser Welding of Aluminium Alloy 5083, in ICALEO 200221st International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, Scottsdale, 2002
17.
Zurück zum Zitat J.H. Cho, D.F. Farson, J.O. Milewski, and K.J. Hollis, Weld Pool Flows During Initial Stages of Keyhole Formation in Laser Welding, J. Phys. D Appl. Phys., 2009, 42, p 175502CrossRef J.H. Cho, D.F. Farson, J.O. Milewski, and K.J. Hollis, Weld Pool Flows During Initial Stages of Keyhole Formation in Laser Welding, J. Phys. D Appl. Phys., 2009, 42, p 175502CrossRef
18.
Zurück zum Zitat H. Du, L. Hu, J. Liu, and X. Hu, A Study on the Metal Flow in Full Penetration Laser Beam Welding for Titanium Alloy, Comput. Mater. Sci., 2004, 29, p 419–427CrossRef H. Du, L. Hu, J. Liu, and X. Hu, A Study on the Metal Flow in Full Penetration Laser Beam Welding for Titanium Alloy, Comput. Mater. Sci., 2004, 29, p 419–427CrossRef
19.
Zurück zum Zitat M. Azizpour, M. Ghoreishi, and A. Khorram, Numerical Simulation of Laser Beam Welding of Ti6Al4V Sheet, J. Comput. Appl. Res. Mech. Eng. (JCARME), 2015, 4(2), p 145–154 M. Azizpour, M. Ghoreishi, and A. Khorram, Numerical Simulation of Laser Beam Welding of Ti6Al4V Sheet, J. Comput. Appl. Res. Mech. Eng. (JCARME), 2015, 4(2), p 145–154
20.
Zurück zum Zitat S.A. Tsirkas, P. Papanikos, and Th. Kermanidis, Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens, J. Mater. Process. Technol., 2003, 134(1), p 59–69CrossRef S.A. Tsirkas, P. Papanikos, and Th. Kermanidis, Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens, J. Mater. Process. Technol., 2003, 134(1), p 59–69CrossRef
21.
Zurück zum Zitat K.N. Lankalapalli, J.F. Tu, and M. Gatner, A Model for Estimating Penetration Depth of Laser Welding Processes, J. Phys. D Appl. Phys., 1996, 29(27), p 197–214 K.N. Lankalapalli, J.F. Tu, and M. Gatner, A Model for Estimating Penetration Depth of Laser Welding Processes, J. Phys. D Appl. Phys., 1996, 29(27), p 197–214
22.
Zurück zum Zitat K. Williams, Development of Laser Welding Theory with Correlation to Experimental Welding Data, Laser Eng., 1999, 8(3), p 197–214 K. Williams, Development of Laser Welding Theory with Correlation to Experimental Welding Data, Laser Eng., 1999, 8(3), p 197–214
23.
Zurück zum Zitat M.R. Amaya-Vázquez, J.M. Sánchez-Amaya, Z. Boukha, and F.J. Botana, Microstructure, Microhardness and Corrosion Resistance of Remelted TiG2 and Ti6Al4V by a High Power Diode Laser, Corros. Sci., 2012, 56, p 36–48CrossRef M.R. Amaya-Vázquez, J.M. Sánchez-Amaya, Z. Boukha, and F.J. Botana, Microstructure, Microhardness and Corrosion Resistance of Remelted TiG2 and Ti6Al4V by a High Power Diode Laser, Corros. Sci., 2012, 56, p 36–48CrossRef
24.
Zurück zum Zitat J.M. Sánchez-Amaya, T. Delgado, J.J. De Damborenea, V. López, and F.J. Botana, Laser Welding of AA 5083 Samples by High Power Diode Laser, Sci. Technol. Weld. Join., 2009, 14(1), p 78–86CrossRef J.M. Sánchez-Amaya, T. Delgado, J.J. De Damborenea, V. López, and F.J. Botana, Laser Welding of AA 5083 Samples by High Power Diode Laser, Sci. Technol. Weld. Join., 2009, 14(1), p 78–86CrossRef
25.
Zurück zum Zitat J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, and F.J. Botana, Laser Welding of Aluminium Alloys 5083 and 6082 Under Conduction Regime, Appl. Surf. Sci., 2009, 255(23), p 9512–9521CrossRef J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, and F.J. Botana, Laser Welding of Aluminium Alloys 5083 and 6082 Under Conduction Regime, Appl. Surf. Sci., 2009, 255(23), p 9512–9521CrossRef
26.
Zurück zum Zitat T.Y. Kuo and H.C. Lin, Effects of Pulse Level of Nd-YAG Laser on Tensile Properties and Formability of Laser Weldments in Automotive Aluminum Alloys, Mat. Sci. Eng. A Struct., 2006, 416, p 281–289CrossRef T.Y. Kuo and H.C. Lin, Effects of Pulse Level of Nd-YAG Laser on Tensile Properties and Formability of Laser Weldments in Automotive Aluminum Alloys, Mat. Sci. Eng. A Struct., 2006, 416, p 281–289CrossRef
27.
Zurück zum Zitat J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Trans., 1984, 15B, p 299–305CrossRef J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Trans., 1984, 15B, p 299–305CrossRef
28.
Zurück zum Zitat S.K. Bate, R. Charles, and A. Warren, Finite Element Analysis of a Single Bead-On-Plate Specimen Using SYSWELD, Int. J. Press. Vessels Pip., 2009, 86, p 73–78CrossRef S.K. Bate, R. Charles, and A. Warren, Finite Element Analysis of a Single Bead-On-Plate Specimen Using SYSWELD, Int. J. Press. Vessels Pip., 2009, 86, p 73–78CrossRef
29.
Zurück zum Zitat E. Akman, A. Demir, T. Canel, and T. Sınmazcelik, Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process. Tech., 2009, 209, p 3705–3713CrossRef E. Akman, A. Demir, T. Canel, and T. Sınmazcelik, Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process. Tech., 2009, 209, p 3705–3713CrossRef
30.
Zurück zum Zitat X. Cao and M. Jahazi, Effect of Welding Speed on Butt Joint Quality of Ti–6Al–4V Alloy Welded Using a High-Power Nd:YAG Laser, Opt. Laser. Eng., 2009, 47, p 1231–1241CrossRef X. Cao and M. Jahazi, Effect of Welding Speed on Butt Joint Quality of Ti–6Al–4V Alloy Welded Using a High-Power Nd:YAG Laser, Opt. Laser. Eng., 2009, 47, p 1231–1241CrossRef
31.
Zurück zum Zitat T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 206–211CrossRef T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 206–211CrossRef
32.
Zurück zum Zitat A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, Effect of Welding Parameters on Morphology and Mechanical Properties of Ti–6Al–4V Laser Beam Welded Butt Joints, J. Mater. Process. Technol., 2012, 212, p 427–436CrossRef A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, Effect of Welding Parameters on Morphology and Mechanical Properties of Ti–6Al–4V Laser Beam Welded Butt Joints, J. Mater. Process. Technol., 2012, 212, p 427–436CrossRef
Metadaten
Titel
FEM Simulation and Experimental Validation of LBW Under Conduction Regime of Ti6Al4V Alloy
verfasst von
C. Churiaque
M. R. Amaya-Vazquez
F. J. Botana
J. M. Sánchez-Amaya
Publikationsdatum
13.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2214-1

Weitere Artikel der Ausgabe 8/2016

Journal of Materials Engineering and Performance 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.