Skip to main content
Erschienen in: Journal of Materials Science 8/2017

27.12.2016 | Original Paper

Few-layer graphene films prepared from commercial copper foil tape

verfasst von: J. J. Vivas-Castro, G. Rueda-Morales, G. Ortega-Cervantez, L. A. Moreno-Ruiz, J. Ortiz-López

Erschienen in: Journal of Materials Science | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a facile, versatile and cost-effective method for the synthesis of mono- and bilayer graphene films on copper substrate using as carbon feedstock the pyrolysis products of the conductive adhesive polymer of a commercial copper tape commonly used in electron microscopy. A copper tape with adhesive on both sides is subjected to a heat treatment during 15 min at temperatures of 900, 1000, and 1050 °C under the flow of an Ar + 3%H2 gas mixture. With this treatment, the tape adhesive polymer is pyrolized and the interaction of its decomposition products with the copper substrate gives rise to a graphene film of good structural quality mixed with amorphous carbon residues of the pyrolysis. For a temperature of 1050 °C (few degrees below the melting point of Cu), mono- and bilayer coexisting domains of graphene are obtained with almost 100% area coverage of the Cu substrate. For lower heat treatment temperatures, area coverage is reduced to 60–70% and the graphene film becomes predominantly bilayer. The treatment at the lowest temperature of 900 °C results in isolated hexagonal domains of graphene intermixed with a large amount of amorphous carbon residues and large uncovered areas of oxidized copper substrate. These results indicate that the number of active species for the formation of graphene films increases with increasing temperature, nevertheless limited by the copper melting point. Characterization of the obtained samples was performed with scanning electron microscopy, Raman scattering, and high-resolution transmission electron microscopy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1195CrossRef Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1195CrossRef
3.
Zurück zum Zitat Chua CK, Martin Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef Chua CK, Martin Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef
4.
Zurück zum Zitat Reina A, Jia X, Ho J et al (2009) Layer area, few layer graphene films on arbitrary substrate by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J et al (2009) Layer area, few layer graphene films on arbitrary substrate by chemical vapor deposition. Nano Lett 9:30–35CrossRef
5.
Zurück zum Zitat Yu Q, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni Surface and transferred to insulators. Appl Phys Lett 93:113103–113105CrossRef Yu Q, Lian J, Siriponglert S et al (2008) Graphene segregated on Ni Surface and transferred to insulators. Appl Phys Lett 93:113103–113105CrossRef
6.
Zurück zum Zitat Prekodravac J, Markovic Z, Jovanovic S et al (2015) The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. Synth Met 209:461–467CrossRef Prekodravac J, Markovic Z, Jovanovic S et al (2015) The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. Synth Met 209:461–467CrossRef
7.
Zurück zum Zitat Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef
8.
Zurück zum Zitat Wu W, Jauregui LA, Su Z et al (2011) Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater 23:4898–4903CrossRef Wu W, Jauregui LA, Su Z et al (2011) Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater 23:4898–4903CrossRef
9.
Zurück zum Zitat Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils, graphene synthesis by ion implantation. Carbon 66:267–271CrossRef Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils, graphene synthesis by ion implantation. Carbon 66:267–271CrossRef
10.
Zurück zum Zitat Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef
11.
13.
Zurück zum Zitat Haris MR, Kathiresan S, Mohan S (2010) FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chem 2:316–323 Haris MR, Kathiresan S, Mohan S (2010) FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chem 2:316–323
14.
Zurück zum Zitat Łapinski A, Spanget J, Langgård Morten, Waluk J, Radziszewski JG (2001) Raman spectrum of the phenyl radical. J Phys Chem A 105(46):10520–10524CrossRef Łapinski A, Spanget J, Langgård Morten, Waluk J, Radziszewski JG (2001) Raman spectrum of the phenyl radical. J Phys Chem A 105(46):10520–10524CrossRef
15.
Zurück zum Zitat Francisco MS, Mastelaro VR (2001) Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2. J Phys Chem B 105:10515–10522CrossRef Francisco MS, Mastelaro VR (2001) Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2. J Phys Chem B 105:10515–10522CrossRef
16.
Zurück zum Zitat Larsson PO, Arne A (1998) Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania. J Catal 179:72–89CrossRef Larsson PO, Arne A (1998) Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on titania and ceria modified titania. J Catal 179:72–89CrossRef
17.
Zurück zum Zitat Wang Z, Pischedda V, Saxena SK, Lazor P (2002) X-ray diffraction and Raman spectroscopic study nanocrystalline CuO under pressures. Solid State Commun 121:275–279CrossRef Wang Z, Pischedda V, Saxena SK, Lazor P (2002) X-ray diffraction and Raman spectroscopic study nanocrystalline CuO under pressures. Solid State Commun 121:275–279CrossRef
18.
Zurück zum Zitat Vera LP, Pérez JA, Riascos H (2013) Análisis espectroscópico de las películas delgadas de óxido de cobre y del plasma producido por deposición de láser pulsado. Rev Colomb Fis 45:146–150 Vera LP, Pérez JA, Riascos H (2013) Análisis espectroscópico de las películas delgadas de óxido de cobre y del plasma producido por deposición de láser pulsado. Rev Colomb Fis 45:146–150
19.
Zurück zum Zitat Mark JE (2007) Physical properties of polymers handbook. Springer, New York, pp 927–938CrossRef Mark JE (2007) Physical properties of polymers handbook. Springer, New York, pp 927–938CrossRef
20.
Zurück zum Zitat Sun JB, Hyunseob L, Ga-Young S (2011) Graphenes converted from polymers. J Phys Chem Lett 2:493–497CrossRef Sun JB, Hyunseob L, Ga-Young S (2011) Graphenes converted from polymers. J Phys Chem Lett 2:493–497CrossRef
21.
Zurück zum Zitat Li ZC, Wu P, Wang CX et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef Li ZC, Wu P, Wang CX et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef
22.
Zurück zum Zitat Chen S, Brown L, Levendorf M et al (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5:1321–1327CrossRef Chen S, Brown L, Levendorf M et al (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5:1321–1327CrossRef
23.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4 Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4
24.
Zurück zum Zitat Gupta A, Chen G, Joshi P et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 12(6):2667–2673CrossRef Gupta A, Chen G, Joshi P et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 12(6):2667–2673CrossRef
25.
Zurück zum Zitat Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRef
26.
Zurück zum Zitat Ding F, Ji HX, Chen YH et al (2011) Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett 10:3453–3458CrossRef Ding F, Ji HX, Chen YH et al (2011) Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett 10:3453–3458CrossRef
27.
Zurück zum Zitat Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
29.
Zurück zum Zitat Park JS, Reina A, Saito R et al (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon 47:1303–1310CrossRef Park JS, Reina A, Saito R et al (2009) G′ band Raman spectra of single, double and triple layer graphene. Carbon 47:1303–1310CrossRef
30.
Zurück zum Zitat Liu W, Li H, Xu C et al (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49:4122–4130CrossRef Liu W, Li H, Xu C et al (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49:4122–4130CrossRef
31.
Zurück zum Zitat Yu Q, Jauregui LA, Wu W et al (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapor deposition. Nat Mater 10:443–449CrossRef Yu Q, Jauregui LA, Wu W et al (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapor deposition. Nat Mater 10:443–449CrossRef
32.
Zurück zum Zitat Yin X, Li Yi, Ke F et al (2014) Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Res 7(11):1613–1622CrossRef Yin X, Li Yi, Ke F et al (2014) Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Res 7(11):1613–1622CrossRef
33.
Zurück zum Zitat Bayle M, Reckinger N, Huntzinger JR, Felten A, Bakaraki A, Landois P, Colomer JF, Henrard L, Zahab AA, Sauvajol JL, Paillet M (2015) Dependence of the Raman spectrum characteristics on the number of layers and stacking orientation in few-layer graphene. Phys Status Solidi B 252:2375–2379CrossRef Bayle M, Reckinger N, Huntzinger JR, Felten A, Bakaraki A, Landois P, Colomer JF, Henrard L, Zahab AA, Sauvajol JL, Paillet M (2015) Dependence of the Raman spectrum characteristics on the number of layers and stacking orientation in few-layer graphene. Phys Status Solidi B 252:2375–2379CrossRef
34.
Zurück zum Zitat Yan K, Peng H, Zhou Y, Li H, Liu Z (2011) Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef Yan K, Peng H, Zhou Y, Li H, Liu Z (2011) Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef
35.
Zurück zum Zitat Murdock AT, Koos A, Britton TB et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2(7):1351–1359CrossRef Murdock AT, Koos A, Britton TB et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2(7):1351–1359CrossRef
36.
Zurück zum Zitat Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10:4702–4707CrossRef Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10:4702–4707CrossRef
37.
Zurück zum Zitat Muramatsu H, Kim YA, Yang KS, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14):2766–2770CrossRef Muramatsu H, Kim YA, Yang KS, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14):2766–2770CrossRef
38.
Zurück zum Zitat Gu W, Zhang W, Li X (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369CrossRef Gu W, Zhang W, Li X (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369CrossRef
39.
Zurück zum Zitat Cui T, Lv Ruitao, Zheng HH et al (2012) Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Nanoscale Res Lett 7:453-1–453-7. doi:10.1186/1556-276X-7-453 CrossRef Cui T, Lv Ruitao, Zheng HH et al (2012) Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Nanoscale Res Lett 7:453-1–453-7. doi:10.​1186/​1556-276X-7-453 CrossRef
40.
Zurück zum Zitat Cho J, Gao L, Tian J et al (2011) Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano 5:3607–3613CrossRef Cho J, Gao L, Tian J et al (2011) Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano 5:3607–3613CrossRef
Metadaten
Titel
Few-layer graphene films prepared from commercial copper foil tape
verfasst von
J. J. Vivas-Castro
G. Rueda-Morales
G. Ortega-Cervantez
L. A. Moreno-Ruiz
J. Ortiz-López
Publikationsdatum
27.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0683-0

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.