Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2014

01.12.2014 | RESEARCH PAPER

Finite element analysis of no–tension structures as a topology optimization problem

verfasst von: Matteo Bruggi

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An alternative numerical approach is presented for the analysis of no–tension masonry–like solids. Whereas most of the strategies available in the literature resort to non–linear finite element techniques, the proposed approach re–formulates the problem within the framework of topology optimization. The equilibrium of a two–dimensional no–tension body is found searching for the distribution of an equivalent orthotropic material, in which tensile principal stresses are not allowed by prescribing negligible stiffness in the relevant direction, such that the potential energy of the solid is minimized. Unlike many conventional approaches that deal with the tough non–linearity of the problem through step–wise incremental analyses, the proposed method efficiently solves the effect of compatible loads through a one–shot energy–based optimization. Analytical and numerical benchmarks from the literature are investigated to assess the effectiveness of the proposed procedure and to discuss convergence features and possible applications inspired by the limit analysis of masonry–like structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no–tension materials. Int J Numer Methods Eng 48(3):317–350CrossRefMATH Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no–tension materials. Int J Numer Methods Eng 48(3):317–350CrossRefMATH
Zurück zum Zitat Ananiev S (2005) On equivalence between optimality criteria and projected gradient methods with application to topology optimization problem. Multibody Syst Dyn 13(1):25–38CrossRefMATHMathSciNet Ananiev S (2005) On equivalence between optimality criteria and projected gradient methods with application to topology optimization problem. Multibody Syst Dyn 13(1):25–38CrossRefMATHMathSciNet
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization inMATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization inMATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH
Zurück zum Zitat Angelillo M (1993) Constitutive relations for no–tension materials. Meccanica 28(3):195–202CrossRefMATH Angelillo M (1993) Constitutive relations for no–tension materials. Meccanica 28(3):195–202CrossRefMATH
Zurück zum Zitat AngelilloM, Cardamone L, Fortunato F (2010) A numerical model for masonry–like structures. J Mech Mater Struct 5(4):583–615CrossRef AngelilloM, Cardamone L, Fortunato F (2010) A numerical model for masonry–like structures. J Mech Mater Struct 5(4):583–615CrossRef
Zurück zum Zitat Baratta A, Corbi O (2010a) An approach to masonry structural analysis by the no-tension assumption - Part I: Material modeling, theoretical setup, and closed form solutions. Appl Mech Rev 63(4):040802CrossRef Baratta A, Corbi O (2010a) An approach to masonry structural analysis by the no-tension assumption - Part I: Material modeling, theoretical setup, and closed form solutions. Appl Mech Rev 63(4):040802CrossRef
Zurück zum Zitat Baratta A, Corbi O (2010b) An approach to masonry structural analysis by the no-tension assumption - Part II: Load singularities, numerical implementation and applications. Appl Mech Rev 63(4):040803CrossRef Baratta A, Corbi O (2010b) An approach to masonry structural analysis by the no-tension assumption - Part II: Load singularities, numerical implementation and applications. Appl Mech Rev 63(4):040803CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogeneization method. Comp Meth Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogeneization method. Comp Meth Appl Mech Eng 71:197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization - Theory, methods and applications. Springer, Berlin Bendsøe MP, Sigmund O (2003) Topology optimization - Theory, methods and applications. Springer, Berlin
Zurück zum Zitat Bendsøe MP, Olhoff N, Sokolowski J (1985) Sensitivity analysis of problems of elasticity with unilateral constraints. J Struct Mech 13(2):201–222CrossRef Bendsøe MP, Olhoff N, Sokolowski J (1985) Sensitivity analysis of problems of elasticity with unilateral constraints. J Struct Mech 13(2):201–222CrossRef
Zurück zum Zitat Bennati S, Padovani C (1992) Soluzioni esplicite per problemi di equilibrio di solidi non reagenti a trazione. In: Proceedings XI AIMETA National congress, Solids and Structures Mechanics, Trento. pp. 73–78 Bennati S, Padovani C (1992) Soluzioni esplicite per problemi di equilibrio di solidi non reagenti a trazione. In: Proceedings XI AIMETA National congress, Solids and Structures Mechanics, Trento. pp. 73–78
Zurück zum Zitat Bruggi M (2008) On the solution of the checkerboard problem in mixed-FEM topology optimization. Comput Struct 86(19–20):1819–1829CrossRef Bruggi M (2008) On the solution of the checkerboard problem in mixed-FEM topology optimization. Comput Struct 86(19–20):1819–1829CrossRef
Zurück zum Zitat Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384CrossRefMATHMathSciNet Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384CrossRefMATHMathSciNet
Zurück zum Zitat Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326CrossRefMathSciNet Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326CrossRefMathSciNet
Zurück zum Zitat Bruggi M, Taliercio A (2013) Topology optimization of the fiber-reinforcement retrofitting existing structures. Int Solids Struct 50(1):121–136CrossRef Bruggi M, Taliercio A (2013) Topology optimization of the fiber-reinforcement retrofitting existing structures. Int Solids Struct 50(1):121–136CrossRef
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non–linear elastic structures and compliant mechanisms. Comp Meth Appl Mech Eng 190:3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non–linear elastic structures and compliant mechanisms. Comp Meth Appl Mech Eng 190:3443–3459CrossRefMATH
Zurück zum Zitat Cai K (2011) A simple approach to find optimal topology of a continuum with tension–only or compression–only material. Struct Multidiscip Optim 43:827–835CrossRef Cai K (2011) A simple approach to find optimal topology of a continuum with tension–only or compression–only material. Struct Multidiscip Optim 43:827–835CrossRef
Zurück zum Zitat Cheng HC, Kikuchi N (1994) An improved approach for determining the optimal orientation of orthotropic material. Struct Optim 8:101–112CrossRef Cheng HC, Kikuchi N (1994) An improved approach for determining the optimal orientation of orthotropic material. Struct Optim 8:101–112CrossRef
Zurück zum Zitat Cheng HC, Pedersen N (1997) On sufficiency conditions for optimal design based on extremnm principles of mechanics. J Mech Phys Solids 45:135–150CrossRefMATH Cheng HC, Pedersen N (1997) On sufficiency conditions for optimal design based on extremnm principles of mechanics. J Mech Phys Solids 45:135–150CrossRefMATH
Zurück zum Zitat Cuomo M, Ventura G (1998) Complementary energy approach to contac problems based on consistent augmented Lagrangian formulation. Math Comput Model 28(4–8):185–204CrossRefMATH Cuomo M, Ventura G (1998) Complementary energy approach to contac problems based on consistent augmented Lagrangian formulation. Math Comput Model 28(4–8):185–204CrossRefMATH
Zurück zum Zitat Cuomo M, Ventura G (2000) Complementary energy formulation of no tension masonry–like solids. Comp Meth Appl Mech Eng 189(1):313–339CrossRefMATHMathSciNet Cuomo M, Ventura G (2000) Complementary energy formulation of no tension masonry–like solids. Comp Meth Appl Mech Eng 189(1):313–339CrossRefMATHMathSciNet
Zurück zum Zitat Diaz AR, Bendsøe MP (1992) Shape optimization of structures for multiple loading conditions using a homogenization method. Struct Optim 4:17–22CrossRef Diaz AR, Bendsøe MP (1992) Shape optimization of structures for multiple loading conditions using a homogenization method. Struct Optim 4:17–22CrossRef
Zurück zum Zitat Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3):150–162CrossRefMATHMathSciNet Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3):150–162CrossRefMATHMathSciNet
Zurück zum Zitat Duysinx P, Bendsøe MPDuysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478CrossRefMATH Duysinx P, Bendsøe MPDuysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478CrossRefMATH
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331–389CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331–389CrossRef
Zurück zum Zitat Foldager J, Hansen JS, Olhoff N (1998) A general approach forcing convexity of ply angle optimization in composite laminates. Struct Optim 16:201–211CrossRef Foldager J, Hansen JS, Olhoff N (1998) A general approach forcing convexity of ply angle optimization in composite laminates. Struct Optim 16:201–211CrossRef
Zurück zum Zitat Fuschi P, Giambanco G, Rizzo S (1995) Nonlinear finite element analysis of no–tension masonry structures. Meccanica 30(3):233–249CrossRefMATH Fuschi P, Giambanco G, Rizzo S (1995) Nonlinear finite element analysis of no–tension masonry structures. Meccanica 30(3):233–249CrossRefMATH
Zurück zum Zitat Genna F (1994) An accurate numerical integration scheme for solving structural problems in the presence of a “no-tension” material. Comput Struct 53:253–273CrossRefMATH Genna F (1994) An accurate numerical integration scheme for solving structural problems in the presence of a “no-tension” material. Comput Struct 53:253–273CrossRefMATH
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T(2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J NumerMethods Eng 61(2):238–254CrossRefMATH Guest JK, Prévost JH, Belytschko T(2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J NumerMethods Eng 61(2):238–254CrossRefMATH
Zurück zum Zitat Kang Z, Wang YQ (2011) Structural topology optimization based on non–local Shepard interpolation of density field. CompMeth Appl Mech Eng 200:3515–3525CrossRefMATHMathSciNet Kang Z, Wang YQ (2011) Structural topology optimization based on non–local Shepard interpolation of density field. CompMeth Appl Mech Eng 200:3515–3525CrossRefMATHMathSciNet
Zurück zum Zitat Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
Zurück zum Zitat Lucchesi M, Padovani C, Pasquinelli G (1995) On the numerical solution of equilibrium problems for elastic solids with bounded tensile strength. Comp Meth Appl Mech Eng 127:37–56CrossRefMATHMathSciNet Lucchesi M, Padovani C, Pasquinelli G (1995) On the numerical solution of equilibrium problems for elastic solids with bounded tensile strength. Comp Meth Appl Mech Eng 127:37–56CrossRefMATHMathSciNet
Zurück zum Zitat Lucchesi M, Padovani C, Pasquinelli G (2000) Thermodynamics of no–tension materials. Int J Solids Struct 37(45):6581–6604CrossRefMATH Lucchesi M, Padovani C, Pasquinelli G (2000) Thermodynamics of no–tension materials. Int J Solids Struct 37(45):6581–6604CrossRefMATH
Zurück zum Zitat Luo JH, Gea HC (1998) Optimal orientation of orthotropic materials using an energy based method. Struct Optim 15:230–236CrossRef Luo JH, Gea HC (1998) Optimal orientation of orthotropic materials using an energy based method. Struct Optim 15:230–236CrossRef
Zurück zum Zitat Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker-Prager yield stress constraints. Comput Struct 90–91:65–75CrossRef Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker-Prager yield stress constraints. Comput Struct 90–91:65–75CrossRef
Zurück zum Zitat Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93:443–464CrossRefMathSciNet Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93:443–464CrossRefMathSciNet
Zurück zum Zitat Maier G, Nappi A (1990) A theory of discretized structural systems. Eng Struct 12(4):227–234CrossRef Maier G, Nappi A (1990) A theory of discretized structural systems. Eng Struct 12(4):227–234CrossRef
Zurück zum Zitat Pedersen N (1989) On optimal orientation of orthotropic materials. Struct Optim 1:101–106CrossRef Pedersen N (1989) On optimal orientation of orthotropic materials. Struct Optim 1:101–106CrossRef
Zurück zum Zitat Pedersen N (1990) Bounds on elastic energy in solids of orthotropic materials. Struct Optim 2:55–63CrossRef Pedersen N (1990) Bounds on elastic energy in solids of orthotropic materials. Struct Optim 2:55–63CrossRef
Zurück zum Zitat Querin OM, Victoria M, Marti P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32CrossRef Querin OM, Victoria M, Marti P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32CrossRef
Zurück zum Zitat Rovati M, Taliercio A (2003) Stationarity of the strain energy density for some classes of anisotropic solids. Int J Solids Struct 40(22):6043–6075CrossRefMATHMathSciNet Rovati M, Taliercio A (2003) Stationarity of the strain energy density for some classes of anisotropic solids. Int J Solids Struct 40(22):6043–6075CrossRefMATHMathSciNet
Zurück zum Zitat Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRef
Zurück zum Zitat Romano G, Sacco E (1984) Sul calcolo di strutture non resistenti a trazione. In: Proceedings VII AIMETA National Congress. Solids and Structures Mechanics, Trieste, pp. 217–226 Romano G, Sacco E (1984) Sul calcolo di strutture non resistenti a trazione. In: Proceedings VII AIMETA National Congress. Solids and Structures Mechanics, Trieste, pp. 217–226
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef
Zurück zum Zitat Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comp Meth Appl Mech Eng 93:291–318CrossRefMATH Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comp Meth Appl Mech Eng 93:291–318CrossRefMATH
Zurück zum Zitat Svanberg K (1987) Method of moving asymptotes - A new method for structural optimization. Int J Numer Methods Eng 24:359–373CrossRefMATHMathSciNet Svanberg K (1987) Method of moving asymptotes - A new method for structural optimization. Int J Numer Methods Eng 24:359–373CrossRefMATHMathSciNet
Zurück zum Zitat Swan CC, Arora JS (1997) Topology design of material layout in structured composite of high stiffness and high strength. Struct Optim 13:45–59CrossRef Swan CC, Arora JS (1997) Topology design of material layout in structured composite of high stiffness and high strength. Struct Optim 13:45–59CrossRef
Metadaten
Titel
Finite element analysis of no–tension structures as a topology optimization problem
verfasst von
Matteo Bruggi
Publikationsdatum
01.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2014
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1093-z

Weitere Artikel der Ausgabe 6/2014

Structural and Multidisciplinary Optimization 6/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.