Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-4/2019

11.06.2019 | ORIGINAL ARTICLE

Finite element analysis of the effect of tool rake angle on brittle-to-ductile transition in diamond cutting of silicon

verfasst von: Junjie Zhang, La Han, Jianguo Zhang, Guo Li, Jianfeng Xu, Yongda Yan, Tao Sun

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brittle-to-ductile transition plays a crucial role in ultra-precision machining of hard-brittle materials. In the present work, we investigate the brittle-to-ductile transition in diamond grooving of monocrystalline silicon by finite element modeling and simulation based on Drucker-Prager constitutive model. The brittle-to-ductile transition behavior is distinguished by analyzing evolutions of chip profile and cutting force. Corresponding diamond grooving experiment using the same machining configuration with the finite element simulation is also carried out to derive the critical depth of cut for the brittle-to-ductile transition. The comparison of experimental value of the critical depth of cut and predicted one by the finite element simulation demonstrates the high accuracy of as-established finite element model. Subsequent finite element simulations are performed to investigate the influence of rake angle of cutting tool on both diamond grooving and conventional diamond cutting with a constant depth of cut, which demonstrates a prominent dependence of brittle-to-ductile transition of silicon on the rake angle ranging from − 60° to 0°. And a critical rake angle for the most pronounced ductile machinability of silicon is found.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rajendra S (2009) Why silicon is and will remain the dominant photovoltaic material. J Nanophotonics 3:032503MathSciNetCrossRef Rajendra S (2009) Why silicon is and will remain the dominant photovoltaic material. J Nanophotonics 3:032503MathSciNetCrossRef
2.
Zurück zum Zitat Saoubi RM, Outeiro JC, Chandrasekaran H, Dillon OW, Jawahir IS (2008) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int J Sustain Manuf 1:203–236CrossRef Saoubi RM, Outeiro JC, Chandrasekaran H, Dillon OW, Jawahir IS (2008) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int J Sustain Manuf 1:203–236CrossRef
3.
Zurück zum Zitat Chon KS, Namba Y (2010) Single-point diamond turning of electroless nickel for flat X-ray mirror. J Mech Sci Technol 24:1603–1609CrossRef Chon KS, Namba Y (2010) Single-point diamond turning of electroless nickel for flat X-ray mirror. J Mech Sci Technol 24:1603–1609CrossRef
4.
Zurück zum Zitat Higginbottom DB, Campbell GT, Araneda G, Fang FZ, Colombe Y, Buchler BC, Lam PK (2018) Fabrication of precision hemispherical mirrors for quantum optics applications. Sci Rep 8:221CrossRef Higginbottom DB, Campbell GT, Araneda G, Fang FZ, Colombe Y, Buchler BC, Lam PK (2018) Fabrication of precision hemispherical mirrors for quantum optics applications. Sci Rep 8:221CrossRef
5.
6.
Zurück zum Zitat Arif M, Rahman M, San WY (2012) A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol 63:481–504CrossRef Arif M, Rahman M, San WY (2012) A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol 63:481–504CrossRef
7.
Zurück zum Zitat Chen YL, Cai Y, Shimizu Y, Ito S, Gao W, Ju BF (2016) Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool. J Micromech Microeng 26:025002CrossRef Chen YL, Cai Y, Shimizu Y, Ito S, Gao W, Ju BF (2016) Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool. J Micromech Microeng 26:025002CrossRef
8.
Zurück zum Zitat Liu K, Zuo D, Li XP, Rahman M (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vac Sci Technol B 27:1361–1366CrossRef Liu K, Zuo D, Li XP, Rahman M (2009) Nanometric ductile cutting characteristics of silicon wafer using single crystal diamond tools. J Vac Sci Technol B 27:1361–1366CrossRef
9.
Zurück zum Zitat Zhou M, Ngoi BKA, Zhong ZW, Chin CS (2001) Brittle-ductile transition in diamond cutting of silicon single crystals. Mater Manuf Process 16:14 Zhou M, Ngoi BKA, Zhong ZW, Chin CS (2001) Brittle-ductile transition in diamond cutting of silicon single crystals. Mater Manuf Process 16:14
10.
Zurück zum Zitat Uddin MS, Seah KHW, Rahman M, Li XP, Liu K (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Process Technol 185:24–30CrossRef Uddin MS, Seah KHW, Rahman M, Li XP, Liu K (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Process Technol 185:24–30CrossRef
11.
Zurück zum Zitat Leung TP, Lee WB, Lu XM (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73:42–48CrossRef Leung TP, Lee WB, Lu XM (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73:42–48CrossRef
12.
Zurück zum Zitat Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73:9CrossRef Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73:9CrossRef
13.
Zurück zum Zitat Chao CL, Ma KJ, Liu DS, Bai CY, Shy TL (2002) Ductile behaviour in single-point diamond-turning of single-crystal silicon. J Mater Process Technol 127:87–190CrossRef Chao CL, Ma KJ, Liu DS, Bai CY, Shy TL (2002) Ductile behaviour in single-point diamond-turning of single-crystal silicon. J Mater Process Technol 127:87–190CrossRef
14.
Zurück zum Zitat Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Technol 121:63–372CrossRef Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Technol 121:63–372CrossRef
15.
Zurück zum Zitat Shibata T, Fujii S, Makino E, Ikeda M (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18:29–137CrossRef Shibata T, Fujii S, Makino E, Ikeda M (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18:29–137CrossRef
16.
Zurück zum Zitat Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. Cirp Ann Manuf Technol 47:5–49CrossRef Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. Cirp Ann Manuf Technol 47:5–49CrossRef
17.
Zurück zum Zitat Wu C, Li B, Yang J, Liang S (2016) Prediction of grinding force for brittle materials considering co-existing of ductility and brittleness. Int J Adv Manuf Technol 87:1967–1975CrossRef Wu C, Li B, Yang J, Liang S (2016) Prediction of grinding force for brittle materials considering co-existing of ductility and brittleness. Int J Adv Manuf Technol 87:1967–1975CrossRef
18.
Zurück zum Zitat Yan JW, Tamaki J, Syoji K (2004) Single-point diamond turning of CaF2 for nanometric surface. Int J Adv Manuf Technol 24:640–646CrossRef Yan JW, Tamaki J, Syoji K (2004) Single-point diamond turning of CaF2 for nanometric surface. Int J Adv Manuf Technol 24:640–646CrossRef
19.
Zurück zum Zitat Uddin MS, Seah KHW, Rahman M, Li XP, Liu K (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Process Technol 185:4–30CrossRef Uddin MS, Seah KHW, Rahman M, Li XP, Liu K (2007) Performance of single crystal diamond tools in ductile mode cutting of silicon. J Mater Process Technol 185:4–30CrossRef
20.
Zurück zum Zitat Patten JA, Gao W (2001) Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis Eng 25:65–167CrossRef Patten JA, Gao W (2001) Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis Eng 25:65–167CrossRef
21.
Zurück zum Zitat Zhang ZY, Du Y, Wang B, Wang Z, Kang RK, Guo D (2017) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65:132CrossRef Zhang ZY, Du Y, Wang B, Wang Z, Kang RK, Guo D (2017) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65:132CrossRef
22.
Zurück zum Zitat Zhang ZY, Cui JF, Wang B, Wang Z, Kang RK, Guo DM (2017) A novel approach of mechanical chemical grinding. J Alloys Compd 726:14–524 Zhang ZY, Cui JF, Wang B, Wang Z, Kang RK, Guo DM (2017) A novel approach of mechanical chemical grinding. J Alloys Compd 726:14–524
23.
Zurück zum Zitat Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition: case study on silicon carbide. Int J Mach Tool Manu 88:14–222CrossRef Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition: case study on silicon carbide. Int J Mach Tool Manu 88:14–222CrossRef
24.
Zurück zum Zitat Zhang JG, Suzuki N, Wang YL, Shamoto E (2014) Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. J Mater Process Technol 214:644–2659 Zhang JG, Suzuki N, Wang YL, Shamoto E (2014) Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. J Mater Process Technol 214:644–2659
25.
Zurück zum Zitat Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:75–884CrossRef Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:75–884CrossRef
26.
Zurück zum Zitat Yang TS, Chang SY, Chou JC (2012) Predictions of scratch characters for engineering material by using fem and abductive network. Appl Mech Mater 232:59–664 Yang TS, Chang SY, Chou JC (2012) Predictions of scratch characters for engineering material by using fem and abductive network. Appl Mech Mater 232:59–664
27.
Zurück zum Zitat Zhang ZY, Guo DM, Wang B, Kang RK, Zhang B (2015) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Report 5:16395CrossRef Zhang ZY, Guo DM, Wang B, Kang RK, Zhang B (2015) A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut. Sci Report 5:16395CrossRef
28.
Zurück zum Zitat Wang B, Zhang ZY, Chang KK, Cui JF, Andreas R, Yu JH, Lin CT, Chen GX, Zang KT, Luo J, Guo DM (2018) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617CrossRef Wang B, Zhang ZY, Chang KK, Cui JF, Andreas R, Yu JH, Lin CT, Chen GX, Zang KT, Luo J, Guo DM (2018) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617CrossRef
29.
Zurück zum Zitat Yan JW, Zhao HW, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by fem. Semicond Sci Technol 24:075018CrossRef Yan JW, Zhao HW, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by fem. Semicond Sci Technol 24:075018CrossRef
30.
Zurück zum Zitat Mir A, Luo XC, Cheng K, Cox A (2017) Investigation of influence of tool rake angle in single point diamond turning of silicon. Int J Adv Manuf Technol 94:2343–2355CrossRef Mir A, Luo XC, Cheng K, Cox A (2017) Investigation of influence of tool rake angle in single point diamond turning of silicon. Int J Adv Manuf Technol 94:2343–2355CrossRef
31.
Zurück zum Zitat Shi LQ, Li XW, Yu F (2013) Finite element simulation of precision cutting monocrystalline silicon. Adv Mater Res 662:99–102CrossRef Shi LQ, Li XW, Yu F (2013) Finite element simulation of precision cutting monocrystalline silicon. Adv Mater Res 662:99–102CrossRef
32.
Zurück zum Zitat Liu HT, Xie WK, Sun YZ, Zhu XF, Wang MH (2017) Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. Int J Adv Manuf Technol 95:9–10 Liu HT, Xie WK, Sun YZ, Zhu XF, Wang MH (2017) Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. Int J Adv Manuf Technol 95:9–10
33.
Zurück zum Zitat Wang SF, An CH, Zhang FH, Wang J, Lei XY, Zhang JF (2016) An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int J Mach Tool Manu 106:98–108CrossRef Wang SF, An CH, Zhang FH, Wang J, Lei XY, Zhang JF (2016) An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int J Mach Tool Manu 106:98–108CrossRef
34.
Zurück zum Zitat Lee SH, Ahn BW (2006) Monitoring of brittle-ductile transition during AFM machining using acoustic emission. Key Eng Mater 326–328:405–408CrossRef Lee SH, Ahn BW (2006) Monitoring of brittle-ductile transition during AFM machining using acoustic emission. Key Eng Mater 326–328:405–408CrossRef
35.
Zurück zum Zitat Koshimizu S, Otsuka J (2001) Detection of ductile to brittle transition in microindentation and microscratching of single crystal silicon using acoustic emission. Mach Sci Technol 5:101–114CrossRef Koshimizu S, Otsuka J (2001) Detection of ductile to brittle transition in microindentation and microscratching of single crystal silicon using acoustic emission. Mach Sci Technol 5:101–114CrossRef
36.
Zurück zum Zitat Youn SW, Kang CG (2005) FEA study on nanodeformation behaviors of amorphous silicon and borosilicate considering tip geometry for pit array fabrication. Mater Sci Eng 390:233–239CrossRef Youn SW, Kang CG (2005) FEA study on nanodeformation behaviors of amorphous silicon and borosilicate considering tip geometry for pit array fabrication. Mater Sci Eng 390:233–239CrossRef
37.
Zurück zum Zitat Blaedel KL, Carr JW, Davis PJ, Goodman WA, Haack JK, Krulewich D (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25:247–257CrossRef Blaedel KL, Carr JW, Davis PJ, Goodman WA, Haack JK, Krulewich D (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25:247–257CrossRef
38.
Zurück zum Zitat Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22:703–707CrossRef Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22:703–707CrossRef
39.
Zurück zum Zitat Zhao QL, Chen MJ, Liang YC, Dong S, Deng C (2002) Effects of diamond cutting tool’s rake angle and rounded cutting edge radius on the machined single crystal silicon surface quality. J Mech Eng-en 12:54–59CrossRef Zhao QL, Chen MJ, Liang YC, Dong S, Deng C (2002) Effects of diamond cutting tool’s rake angle and rounded cutting edge radius on the machined single crystal silicon surface quality. J Mech Eng-en 12:54–59CrossRef
40.
Zurück zum Zitat Durazo-Cardenas I, Shore P, Luo XC, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262:340–349CrossRef Durazo-Cardenas I, Shore P, Luo XC, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262:340–349CrossRef
41.
Zurück zum Zitat Wang MH, Wang W, Lu ZS (2013) Critical cutting thickness in ultra-precision machining of single crystal silicon. Int J Adv Manuf Technol 65:843–851CrossRef Wang MH, Wang W, Lu ZS (2013) Critical cutting thickness in ultra-precision machining of single crystal silicon. Int J Adv Manuf Technol 65:843–851CrossRef
42.
Zurück zum Zitat Mir A, Luo XC, Siddiq A (2017) Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon. Int J Adv Manuf Technol 88:2461–2476CrossRef Mir A, Luo XC, Siddiq A (2017) Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon. Int J Adv Manuf Technol 88:2461–2476CrossRef
43.
Zurück zum Zitat Ando T, Sato K, Shikida M, Yoshioka T, Yoshikawa Y, Kawabata T (1997) Orientation-dependent fracture strain in single-crystal silicon beams under uniaxial tensile conditions. Proc IEEE Int Symp Micromechatronics Hum Sci:55–60 Ando T, Sato K, Shikida M, Yoshioka T, Yoshikawa Y, Kawabata T (1997) Orientation-dependent fracture strain in single-crystal silicon beams under uniaxial tensile conditions. Proc IEEE Int Symp Micromechatronics Hum Sci:55–60
44.
Zurück zum Zitat Zhang JJ, Zhang JG, Wang ZF, Hartmaier A, Yan Y, Sun T (2017) Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation. Comput Mater Sci 131:55–61CrossRef Zhang JJ, Zhang JG, Wang ZF, Hartmaier A, Yan Y, Sun T (2017) Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation. Comput Mater Sci 131:55–61CrossRef
45.
Zurück zum Zitat Zhu B, Zhao D, Zhao HW, Guan J, Hou PL, Wang SB, Qian L (2017) A study on the surface quality and brittle-ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations. RSC Adv 7:4179–4189CrossRef Zhu B, Zhao D, Zhao HW, Guan J, Hou PL, Wang SB, Qian L (2017) A study on the surface quality and brittle-ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations. RSC Adv 7:4179–4189CrossRef
46.
Zurück zum Zitat Ravindra D, Ghantasala MK, Patten J (2012) Ductile mode material removal and high-pressure phase transformation in silicon during micro-laser assisted machining. Precis Eng 36:364–367CrossRef Ravindra D, Ghantasala MK, Patten J (2012) Ductile mode material removal and high-pressure phase transformation in silicon during micro-laser assisted machining. Precis Eng 36:364–367CrossRef
47.
Zurück zum Zitat Zhang ZB, Stukowski A, Urbassek HM (2016) Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput Mater Sci 119:82–89CrossRef Zhang ZB, Stukowski A, Urbassek HM (2016) Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput Mater Sci 119:82–89CrossRef
48.
Zurück zum Zitat Callahan DL, Morris JC (1992) The extent of phase transformation in silicon hardness indentations. J Mater Res 7:1614–1617CrossRef Callahan DL, Morris JC (1992) The extent of phase transformation in silicon hardness indentations. J Mater Res 7:1614–1617CrossRef
49.
Zurück zum Zitat Cai MB, Li XP, Rahman M (2007) High-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer. P I Mech Eng B-J Eng 221:1511–1519 Cai MB, Li XP, Rahman M (2007) High-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer. P I Mech Eng B-J Eng 221:1511–1519
50.
Zurück zum Zitat Yan J, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33:378–386CrossRef Yan J, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33:378–386CrossRef
51.
Zurück zum Zitat Zhang ZY, Wang B, Kang RK, Zhang B, Guo DM (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64:349–352CrossRef Zhang ZY, Wang B, Kang RK, Zhang B, Guo DM (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann Manuf Technol 64:349–352CrossRef
Metadaten
Titel
Finite element analysis of the effect of tool rake angle on brittle-to-ductile transition in diamond cutting of silicon
verfasst von
Junjie Zhang
La Han
Jianguo Zhang
Guo Li
Jianfeng Xu
Yongda Yan
Tao Sun
Publikationsdatum
11.06.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-4/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03888-8

Weitere Artikel der Ausgabe 1-4/2019

The International Journal of Advanced Manufacturing Technology 1-4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.