Skip to main content
Erschienen in: Neural Processing Letters 6/2022

09.05.2022

Finite Time Stability of Caputo–Katugampola Fractional Order Time Delay Projection Neural Networks

verfasst von: Mengxue Dai, Yirong Jiang, Jinsheng Du, Guoji Tang

Erschienen in: Neural Processing Letters | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper explores the finite time stability of Caputo–Katugampola fractional order projection neural network with time delay. By employing the Sadovskii fixed point theorem, the Banach fixed point theorem and the generalized Gronwall inequality, we establish the existence and boundedness theorems of solutions for Caputo–Katugampola fractional order time delay projected neural networks. Further, we apply the proposed theorems and the techniques of inequalities to obtain the finite time stability of the equilibrium point for the presented system. Finally, the effectiveness of the theoretical result is shown through simulations for a numerical example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nagurney A, Zhang D (1995) Projected dynamical systems and variational inequalities with applications. Sci Bus Med 22:296MATH Nagurney A, Zhang D (1995) Projected dynamical systems and variational inequalities with applications. Sci Bus Med 22:296MATH
2.
Zurück zum Zitat Brogliato B, Daniilidis A, Lemaréchal C, Acary V (2006) On the equivalence between complementarity systems, projected systems and differential inclusions. Syst Control Lett 55:45–51MathSciNetCrossRefMATH Brogliato B, Daniilidis A, Lemaréchal C, Acary V (2006) On the equivalence between complementarity systems, projected systems and differential inclusions. Syst Control Lett 55:45–51MathSciNetCrossRefMATH
3.
Zurück zum Zitat Cojocaru MG, Daniele P, Nagurney A (2005) Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications. J Optim Theory Appl 127:549–563MathSciNetCrossRefMATH Cojocaru MG, Daniele P, Nagurney A (2005) Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications. J Optim Theory Appl 127:549–563MathSciNetCrossRefMATH
5.
Zurück zum Zitat Hauswirth A, Bolognani S, Dorfler F (2021) Projected dynamical systems on irregular, non-Euclidean domains for nonlinear optimization. SIAM J Control Optim 59:635–668MathSciNetCrossRefMATH Hauswirth A, Bolognani S, Dorfler F (2021) Projected dynamical systems on irregular, non-Euclidean domains for nonlinear optimization. SIAM J Control Optim 59:635–668MathSciNetCrossRefMATH
6.
Zurück zum Zitat Li JD, Huang NJ (2018) Asymptotical stability for a class of complex-valued projective neural network. J Optim Theory Appl 177:261–270MathSciNetCrossRefMATH Li JD, Huang NJ (2018) Asymptotical stability for a class of complex-valued projective neural network. J Optim Theory Appl 177:261–270MathSciNetCrossRefMATH
8.
Zurück zum Zitat Baleanu D (2012) Fractional calculus: models and numerical methods. World Scientific, SingaporeCrossRefMATH Baleanu D (2012) Fractional calculus: models and numerical methods. World Scientific, SingaporeCrossRefMATH
9.
Zurück zum Zitat Hilfer R (2000) Applications of fractional calculus in physics, applications of fractional calculus in physics. World Scientific, SingaporeCrossRefMATH Hilfer R (2000) Applications of fractional calculus in physics, applications of fractional calculus in physics. World Scientific, SingaporeCrossRefMATH
10.
Zurück zum Zitat Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH
11.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
13.
Zurück zum Zitat Wu ZB, Li JD, Huang NJ (2018) A new system of global fractional-order interval implicit projection neural networks. Neurocomputing 282:111–121CrossRef Wu ZB, Li JD, Huang NJ (2018) A new system of global fractional-order interval implicit projection neural networks. Neurocomputing 282:111–121CrossRef
14.
Zurück zum Zitat Wu ZB, Min C, Huang NJ (2018) On a system of fuzzy fractional differential inclusions with projection operators. Fuzzy Sets Syst 347:70–88MathSciNetCrossRefMATH Wu ZB, Min C, Huang NJ (2018) On a system of fuzzy fractional differential inclusions with projection operators. Fuzzy Sets Syst 347:70–88MathSciNetCrossRefMATH
15.
Zurück zum Zitat Wu ZB, Zou YZ, Huang NJ (2016) A class of global fractional-order projective dynamical systems involving set-valued perturbations. Appl Math Comput 277:23–33MathSciNetMATH Wu ZB, Zou YZ, Huang NJ (2016) A class of global fractional-order projective dynamical systems involving set-valued perturbations. Appl Math Comput 277:23–33MathSciNetMATH
16.
Zurück zum Zitat Wu ZB, Zou YZ, Huang NJ (2016) A system of fractional-order interval projection neural networks. J Comput Appl Math 294:389–402MathSciNetCrossRefMATH Wu ZB, Zou YZ, Huang NJ (2016) A system of fractional-order interval projection neural networks. J Comput Appl Math 294:389–402MathSciNetCrossRefMATH
17.
Zurück zum Zitat Wu ZB, Zou YZ, Huang NJ (2020) A new class of global fractional-order projective dynamical system with an application. J Ind Manag Optim 16:37–53MathSciNetCrossRefMATH Wu ZB, Zou YZ, Huang NJ (2020) A new class of global fractional-order projective dynamical system with an application. J Ind Manag Optim 16:37–53MathSciNetCrossRefMATH
18.
Zurück zum Zitat Li JD, Wu ZB, Huang NJ (2019) Asymptotical stability of Riemann–Liouville fractional-order neutral type delayed projective neural networks. Neural Proc Lett 50:565–579CrossRef Li JD, Wu ZB, Huang NJ (2019) Asymptotical stability of Riemann–Liouville fractional-order neutral type delayed projective neural networks. Neural Proc Lett 50:565–579CrossRef
19.
Zurück zum Zitat Huang WQ, Song QK, Zhao ZJ, Liu YR, Alsaadi FE (2021) Robust stability for a class of fractional-order complex-valued projective neural networks with neutral-type delays and uncertain parameters. Neurocomputing 450:399–410CrossRef Huang WQ, Song QK, Zhao ZJ, Liu YR, Alsaadi FE (2021) Robust stability for a class of fractional-order complex-valued projective neural networks with neutral-type delays and uncertain parameters. Neurocomputing 450:399–410CrossRef
20.
Zurück zum Zitat Li JD, Wu ZB, Huang NJ (2020) Global Mittag–Leffler stability of fractional-order projection neural networks with impulses. arXiv preprint arXiv:2011.0218 Li JD, Wu ZB, Huang NJ (2020) Global Mittag–Leffler stability of fractional-order projection neural networks with impulses. arXiv preprint arXiv:​2011.​0218
21.
Zurück zum Zitat Nagy AM, Makhlouf AB, Alsenafi A, Alazemi F (2021) Combination synchronization of fractional systems involving the Caputo–Hadamard derivative. Mathematics 9:2781CrossRef Nagy AM, Makhlouf AB, Alsenafi A, Alazemi F (2021) Combination synchronization of fractional systems involving the Caputo–Hadamard derivative. Mathematics 9:2781CrossRef
22.
Zurück zum Zitat Ben Makhlouf A (2018) Stability with respect to part of the variables of nonlinear Caputo fractional differential equations. Math Commun 23:119–126MathSciNetMATH Ben Makhlouf A (2018) Stability with respect to part of the variables of nonlinear Caputo fractional differential equations. Math Commun 23:119–126MathSciNetMATH
25.
Zurück zum Zitat Wang X, Wu H, Cao JD (2020) Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth. Nonlinear Anal Hybrid Syst 37:100888MathSciNetCrossRefMATH Wang X, Wu H, Cao JD (2020) Global leader-following consensus in finite time for fractional-order multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth. Nonlinear Anal Hybrid Syst 37:100888MathSciNetCrossRefMATH
26.
Zurück zum Zitat Li R, Wu H, Cao JD (2022) Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations. Acta Math Sci 42:737–754MathSciNetCrossRefMATH Li R, Wu H, Cao JD (2022) Impulsive exponential synchronization of fractional-order complex dynamical networks with derivative couplings via feedback control based on discrete time state observations. Acta Math Sci 42:737–754MathSciNetCrossRefMATH
27.
Zurück zum Zitat Hien LV (2014) An explicit criterion for finite-time stability of linear nonautonomous systems with delays. Appl Math Lett 30:12–18MathSciNetCrossRefMATH Hien LV (2014) An explicit criterion for finite-time stability of linear nonautonomous systems with delays. Appl Math Lett 30:12–18MathSciNetCrossRefMATH
28.
Zurück zum Zitat Cao XK, Wang JR (2018) Finite-time stability of a class of oscillating systems with two delays. Math Methods Appl Sci 41:4943–4954MathSciNetCrossRefMATH Cao XK, Wang JR (2018) Finite-time stability of a class of oscillating systems with two delays. Math Methods Appl Sci 41:4943–4954MathSciNetCrossRefMATH
29.
Zurück zum Zitat Katugampola UN (2011) New approach to a generalized fractional integral. Appl Math Comput 218:860–865MathSciNetMATH Katugampola UN (2011) New approach to a generalized fractional integral. Appl Math Comput 218:860–865MathSciNetMATH
30.
Zurück zum Zitat Katugampola UN (2014) Existence and uniqueness results for a class of generalized fractional differential equations. arXiv Preprint arXiv:1411.5229 Katugampola UN (2014) Existence and uniqueness results for a class of generalized fractional differential equations. arXiv Preprint arXiv:​1411.​5229
31.
Zurück zum Zitat Anderson DR, Ulness DJ (2016) Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J Math Phys 56:063502MathSciNetCrossRefMATH Anderson DR, Ulness DJ (2016) Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J Math Phys 56:063502MathSciNetCrossRefMATH
32.
Zurück zum Zitat Cavazzuti E, Pappalardo M, Passacantando M (2002) Nash equilibria, variational inequalities, and dynamical systems. J Optim Theory Appl 114:491–506MathSciNetCrossRefMATH Cavazzuti E, Pappalardo M, Passacantando M (2002) Nash equilibria, variational inequalities, and dynamical systems. J Optim Theory Appl 114:491–506MathSciNetCrossRefMATH
33.
Zurück zum Zitat Pappalardo M, Passacantando M (2002) Stability for equilibrium problems: from variational inequalities to dynamical systems. J Optim Theory Appl 113:567–582MathSciNetCrossRefMATH Pappalardo M, Passacantando M (2002) Stability for equilibrium problems: from variational inequalities to dynamical systems. J Optim Theory Appl 113:567–582MathSciNetCrossRefMATH
34.
Zurück zum Zitat Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Reg 49:447–458MathSciNetCrossRefMATH Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Reg 49:447–458MathSciNetCrossRefMATH
35.
Zurück zum Zitat Katugampola UN (2014) A new approach to generalized fractional derivatives. Bull Math Anal Appl 6:1–15MathSciNetMATH Katugampola UN (2014) A new approach to generalized fractional derivatives. Bull Math Anal Appl 6:1–15MathSciNetMATH
36.
Zurück zum Zitat Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Academic Press, New YorkMATH Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Academic Press, New YorkMATH
37.
Zurück zum Zitat Sousa JVC, Oliveira EC (2017) A Gronwall inequality and the Cauchy-type problem by means of \(\Psi \)-Hilfer operator. arXiv preprint arXiv:1709.03634 Sousa JVC, Oliveira EC (2017) A Gronwall inequality and the Cauchy-type problem by means of \(\Psi \)-Hilfer operator. arXiv preprint arXiv:​1709.​03634
38.
Zurück zum Zitat Ke Y, Miao C (2015) Stability analysis of fractional-order Cohen–Grossberg neural networks with time delay. Int J Comput Math 92:1102–1113MathSciNetCrossRefMATH Ke Y, Miao C (2015) Stability analysis of fractional-order Cohen–Grossberg neural networks with time delay. Int J Comput Math 92:1102–1113MathSciNetCrossRefMATH
39.
Zurück zum Zitat Kamenskii M, Obukhovskii V, Zecca P (2001) Condensing multivaluedmaps and semilinear differential inclusions in Banach spaces. de Gruyter, BerlinCrossRefMATH Kamenskii M, Obukhovskii V, Zecca P (2001) Condensing multivaluedmaps and semilinear differential inclusions in Banach spaces. de Gruyter, BerlinCrossRefMATH
41.
Zurück zum Zitat Zhao W, Wu H (2018) Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays. Adv Differ Equ 1:1–21MathSciNetMATH Zhao W, Wu H (2018) Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays. Adv Differ Equ 1:1–21MathSciNetMATH
Metadaten
Titel
Finite Time Stability of Caputo–Katugampola Fractional Order Time Delay Projection Neural Networks
verfasst von
Mengxue Dai
Yirong Jiang
Jinsheng Du
Guoji Tang
Publikationsdatum
09.05.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 6/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10838-1

Weitere Artikel der Ausgabe 6/2022

Neural Processing Letters 6/2022 Zur Ausgabe

Neuer Inhalt