Skip to main content
Erschienen in:

14.06.2023 | Manuscript

Fire Detection and Spatial Localization Approach for Autonomous Suppression Systems Based on Artificial Intelligence

verfasst von: Afsah Latif, Hyun Chung

Erschienen in: Fire Technology | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of autonomous fire suppression systems is widely studied these days to ensure human safety during fire disasters. The evolution in convolutional neural networks (CNNs) has placed substantial emphasis on fire detection through images. Compared to other image processing methods, CNN architectures have proved their efficiency in very accurately detecting fires. However, delayed detection and computational complexity due to manual feature extraction are still concerns for researchers. Therefore, in this research, an autonomous 3D fire location prediction system is presented using YOLOv4 as a fire detector and a self-stereo vision camera setup to locate the position of the fire in real-world coordinates. The single-stage strategy of YOLOv4 has exceptionally increased the detection speed. The results show that YOLOv4 has achieved the fastest ever speed of 30 frames per second in very accurately detecting fires. Obtained by the YOLOv4 model, the pixel coordinates from the center of the bottom line of the bounding boxes around a fire are used in a self-stereo vision camera system to predict the 3D real-world coordinates of the source fire. The study reveals that the proposed system is economical and sufficiently efficient to be used as an early fire detector and location predictor in common surveillance systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
19.
Zurück zum Zitat Kang LW, Wang IS, Chou KL, Chen SY, Chang YS (2019) “Image-based real-time fire detection using deep learning with data augmentation for vision-based surveillance applications,” 2019 16th IEEE International Conference on Advance Video Signal Based Surveillance, AVSS 2019, pp. 1–4, 2019. https://doi.org/10.1109/AVSS.2019.8909899. Kang LW, Wang IS, Chou KL, Chen SY, Chang YS (2019) “Image-based real-time fire detection using deep learning with data augmentation for vision-based surveillance applications,” 2019 16th IEEE International Conference on Advance Video Signal Based Surveillance, AVSS 2019, pp. 1–4, 2019. https://​doi.​org/​10.​1109/​AVSS.​2019.​8909899.
20.
Zurück zum Zitat Wu Z, Xue R, Li H (2022) Real-time video fire detection via modified YOLOv5 network model. Fire Technol 58:1–27CrossRef Wu Z, Xue R, Li H (2022) Real-time video fire detection via modified YOLOv5 network model. Fire Technol 58:1–27CrossRef
21.
Zurück zum Zitat Ge Q, Wen C, Duan S (2014) Fire localization based on range-range-range model for limited interior space. IEEE Trans Instrum and Meas 63(9):2223–2237CrossRef Ge Q, Wen C, Duan S (2014) Fire localization based on range-range-range model for limited interior space. IEEE Trans Instrum and Meas 63(9):2223–2237CrossRef
26.
Zurück zum Zitat Mcneil JG, Starr J, Lattimer BY, (2013) Overview, “autonomous fire suppression using multispectral sensors” pp. 1504–1509. Mcneil JG, Starr J, Lattimer BY, (2013) Overview, “autonomous fire suppression using multispectral sensors” pp. 1504–1509.
28.
Zurück zum Zitat Bochkovskiy A, Wang CY, and Liao HYM, “YOLOv4: optimal speed and accuracy of object detection,” arXiv, 2020. Bochkovskiy A, Wang CY, and Liao HYM, “YOLOv4: optimal speed and accuracy of object detection,” arXiv, 2020.
31.
Zurück zum Zitat Redmon J and Farhadi A (2018) “YOLOv3: An incremental improvement,” arXiv. Redmon J and Farhadi A (2018) “YOLOv3: An incremental improvement,” arXiv.
34.
Zurück zum Zitat Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision. Cambridge University Press, CambridgeCrossRefMATH Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision. Cambridge University Press, CambridgeCrossRefMATH
35.
Zurück zum Zitat Zhang Z, Member S (2000) A flexible new technique for camera calibration æ. EEE Trans on Pattern Anal Mach Intell 22(11):1330–1334CrossRef Zhang Z, Member S (2000) A flexible new technique for camera calibration æ. EEE Trans on Pattern Anal Mach Intell 22(11):1330–1334CrossRef
36.
Zurück zum Zitat Chino DYT, Avalhais LPS, Rodrigues JF, Traina AJM (2015) BoWFire: detection of fire in still images by integrating pixel color and texture analysis. In: 2015 28th SIBGRAPI conference on graphics, patterns and images, Salvador, Brazil, pp. 95–102. https://doi.org/10.1109/SIBGRAPI.2015.19 Chino DYT, Avalhais LPS, Rodrigues JF, Traina AJM (2015) BoWFire: detection of fire in still images by integrating pixel color and texture analysis. In: 2015 28th SIBGRAPI conference on graphics, patterns and images, Salvador, Brazil, pp. 95–102. https://​doi.​org/​10.​1109/​SIBGRAPI.​2015.​19
40.
Zurück zum Zitat Yin ZJ, Wan BY, Yuan FN, Xia X, Shi JT (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef Yin ZJ, Wan BY, Yuan FN, Xia X, Shi JT (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef
43.
Zurück zum Zitat Spizhevoy A, Rybnikov A (2018) OpenCV 3 computer vision with Python cookbook: leverage the power of OpenCV 3 and Python to build computer vision applications. Packt publishing Ltd, Birmingham Spizhevoy A, Rybnikov A (2018) OpenCV 3 computer vision with Python cookbook: leverage the power of OpenCV 3 and Python to build computer vision applications. Packt publishing Ltd, Birmingham
44.
Zurück zum Zitat A. Rafiee, R. Dianat, M. Jamshidi, R. Tavakoli, and S. Abbaspour, “Fire and smoke detection using wavelet analysis and disorder characteristics,” In: ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 2011, vol. 3, pp. 262–265. https://doi.org/10.1109/ICCRD.2011.5764295 A. Rafiee, R. Dianat, M. Jamshidi, R. Tavakoli, and S. Abbaspour, “Fire and smoke detection using wavelet analysis and disorder characteristics,” In: ICCRD2011 - 2011 3rd International Conference on Computer Research and Development, 2011, vol. 3, pp. 262–265. https://​doi.​org/​10.​1109/​ICCRD.​2011.​5764295
Metadaten
Titel
Fire Detection and Spatial Localization Approach for Autonomous Suppression Systems Based on Artificial Intelligence
verfasst von
Afsah Latif
Hyun Chung
Publikationsdatum
14.06.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01426-3

Weitere Artikel der Ausgabe 5/2023

Fire Technology 5/2023 Zur Ausgabe