Skip to main content
Erschienen in: Queueing Systems 3-4/2022

16.03.2022

First exit time for a discrete-time parallel queue

verfasst von: Zbigniew Palmowski

Erschienen in: Queueing Systems | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

We consider a discrete-time parallel queue, which is a two-queue network, with batch arrivals and services. At the beginning of the nth time slot, \(A_n\) customers arrive to both queues. Then after this, \(S_n^i\in {\mathbb {N}}\cup \{0\}\) customers can be served in slot n by server i for \(i=1,2\). We assume that \(\{A_n\}_{\{n\in {\mathbb {N}}\cup \{0\}\}}\), \(\{S_n^i\}_{\{n\in {\mathbb {N}}\cup \{0\}\}}\) are independent sequences of i.i.d. random variables with support in \({\mathbb {N}}\cup \{0\}\) and \({\mathbb {E}}A_n<{\mathbb {E}}S_n^i\) for \(i=1,2\). Let \(Q_n^i\) with \(i=1,2\) be the queue length after the service \(S_{n-1}^i\) and before the arrival \(A_n\). Then, it satisfies the Lindley recursion \(Q_{n+1}^i=(Q_n^i+A_n-S_n^i)_+\) for \(i=1,2\) and its stationary law \((Q_\infty ^1, Q_\infty ^2)\) is given by \((\max _{n\in {\mathbb {N}}\cup \{0\}}T_n^1, \max _{n\in {\mathbb {N}}\cup \{0\}} T_n^2)\) where \(T_n^i=\sum _{k=1}^{n} (A_k-S_k^i),\quad T_0^i=0, \quad i=1,2.\) For
$$\begin{aligned} {\mathscr {A}}_n=\sum _{k=1}^n A_k, \quad {\mathscr {S}}_n^i=\sum _{k=1}^n S_k^i, \quad i=1,2, \end{aligned}$$
and \(x,y\in {\mathbb {N}}\cup \{0\}\), we are interested in
$$\begin{aligned} H(x,y)= & {} {\mathbb {P}}(Q_\infty ^1>x, Q_\infty ^2>y)\\= & {} {\mathbb {P}}(\text {there exists }n\in {\mathbb {N}}\text { such that}\quad {\mathscr {A}}_n>\max \{x+{\mathscr {S}}_n^1, y+{\mathscr {S}}_n^2\}). \end{aligned}$$
Note that H(xy) equals the probability that the first entrance time of the two-dimensional random walk \(\{({\mathscr {A}}_n-{\mathscr {S}}_n^1, {\mathscr {A}}_n-{\mathscr {S}}_n^2), n\in {\mathbb {N}}\cup \{0\}\}\) to the set \([x, \infty ]\times [y, \infty ]\) is finite. In the context of actuarial science, H(xy) corresponds to ruin probability for a discrete-time two-dimensional insurance risk model where each business line faces common simultaneous losses \(A_k\) and \(S_k^i\), for \(i=1,2\), is the premium derived within the kth period of times (see [1] for similar considerations). …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Badila, E.S., Boxma, O., Resing, J.A.C.: Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times. Insur. Math. Econ. 61, 48–61 (2015)CrossRef Badila, E.S., Boxma, O., Resing, J.A.C.: Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times. Insur. Math. Econ. 61, 48–61 (2015)CrossRef
2.
Zurück zum Zitat Borovkov, A.A., Mogulskii, A.A.: Large deviations for Markov chains in the positive quadrant. Russ. Math. Surv. 56, 803–916 (2001)CrossRef Borovkov, A.A., Mogulskii, A.A.: Large deviations for Markov chains in the positive quadrant. Russ. Math. Surv. 56, 803–916 (2001)CrossRef
3.
Zurück zum Zitat Borovkov, A.A., Mogulskii, A.A.: The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks. Sib. Math. J. 37, 745–782 (1996) Borovkov, A.A., Mogulskii, A.A.: The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks. Sib. Math. J. 37, 745–782 (1996)
4.
Zurück zum Zitat Boxma, O., Koole, G., Liu, Z.: Queueing-theoretic solution methods for models of parallel distributed systems. In: Performance Evaluation of Parallel and Distributed Systems, pp. 1–24. CWI Tract 105, Amsterdam (1994) Boxma, O., Koole, G., Liu, Z.: Queueing-theoretic solution methods for models of parallel distributed systems. In: Performance Evaluation of Parallel and Distributed Systems, pp. 1–24. CWI Tract 105, Amsterdam (1994)
5.
Zurück zum Zitat Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland Mathematics Studies, vol. 79. North-Holland Publishing Company, Amsterdam (1983)CrossRef Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland Mathematics Studies, vol. 79. North-Holland Publishing Company, Amsterdam (1983)CrossRef
6.
Zurück zum Zitat Collamore, J.F.: Hitting probabilities and large deviations. Ann. Probab. 24(4), 2065–2078 (1996)CrossRef Collamore, J.F.: Hitting probabilities and large deviations. Ann. Probab. 24(4), 2065–2078 (1996)CrossRef
7.
Zurück zum Zitat Dai, J.G., Miyazawa, M.: Reflecting Brownian motion in two dimensions: exact asymptotics for the stationary distribution. Stoch. Syst. 1(1), 146–208 (2011)CrossRef Dai, J.G., Miyazawa, M.: Reflecting Brownian motion in two dimensions: exact asymptotics for the stationary distribution. Stoch. Syst. 1(1), 146–208 (2011)CrossRef
8.
Zurück zum Zitat Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane. Algebraic Methods, Boundary Value Problems. Applications to Queueing Systems and Analytic Combinatorics. Springer (2017) Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane. Algebraic Methods, Boundary Value Problems. Applications to Queueing Systems and Analytic Combinatorics. Springer (2017)
9.
Zurück zum Zitat Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 325–351 (1979)CrossRef Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 325–351 (1979)CrossRef
10.
Zurück zum Zitat Foss, S., Korshunov, D., Palmowski, Z., Rolski, T.: Two-dimensional ruin probability for subexponential claim size. Probab. Math. Stat. 37(2), 319–335 (2017) Foss, S., Korshunov, D., Palmowski, Z., Rolski, T.: Two-dimensional ruin probability for subexponential claim size. Probab. Math. Stat. 37(2), 319–335 (2017)
11.
Zurück zum Zitat Foss, S., Palmowski, Z., Zachary, S.: The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk. Ann. Appl. Probab. 3, 1936–1957 (2005) Foss, S., Palmowski, Z., Zachary, S.: The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk. Ann. Appl. Probab. 3, 1936–1957 (2005)
12.
Zurück zum Zitat Kobayashi, M., Miyazawa, M.: Tail asymptotics of the stationary distribution of a two-dimensional reflecting random walk with unbounded upward jumps. Adv. Appl. Probab. 46(2), 365–399 (2014)CrossRef Kobayashi, M., Miyazawa, M.: Tail asymptotics of the stationary distribution of a two-dimensional reflecting random walk with unbounded upward jumps. Adv. Appl. Probab. 46(2), 365–399 (2014)CrossRef
13.
Zurück zum Zitat Lieshout, P., Mandjes, M.: Tandem Brownian queues. Math. Methods Oper. Res. 66, 275–298 (2007)CrossRef Lieshout, P., Mandjes, M.: Tandem Brownian queues. Math. Methods Oper. Res. 66, 275–298 (2007)CrossRef
Metadaten
Titel
First exit time for a discrete-time parallel queue
verfasst von
Zbigniew Palmowski
Publikationsdatum
16.03.2022
Verlag
Springer US
Erschienen in
Queueing Systems / Ausgabe 3-4/2022
Print ISSN: 0257-0130
Elektronische ISSN: 1572-9443
DOI
https://doi.org/10.1007/s11134-022-09744-z

Weitere Artikel der Ausgabe 3-4/2022

Queueing Systems 3-4/2022 Zur Ausgabe

Premium Partner