Skip to main content
Erschienen in: Cellulose 6/2018

03.05.2018 | Original Paper

Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering

verfasst von: Shan He, Binjie Xin, Zhuoming Chen, Yan Liu

Erschienen in: Cellulose | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible electronic devices have attracted considerable attention in recent years. Textile fabrics have been widely used to fabricate flexible strain sensors owing to their high flexibility. However, the ordinary textile fabric is electrically insulating, which limits their sensitivity to strain. In this article, cotton fabric endowed with high electrical conductivity was prepared by a two-step process of dipping and coating. It was firstly modified with a continuous reduced graphene oxide thin film by using a dipping method and then coated with silver (Ag) thin films by using a magnetron sputtering system. In addition, a strain sensor was also fabricated using the resultant fabric, namely the silver/graphene cotton (Ag/G-coated cotton). Our results revealed that the Ag/G-coated cotton fabric sputtered at 200 W for 25 min has the highest electrical conductivity and its average surface resistance is 2.71 Ω/sq. Moreover, the fabricated strain sensor based on Ag/G-coated cotton fabric exhibited the advantages of high sensitivity, large workable strain range (0–20%), fast response and great stability. What’s more, real-time monitoring of human motions, such as flexing and finger rotation, could be achieved by the sensor. Overall, the effective flexibility and high electrical conductivity of the Ag/G-coated cotton fabric have been validated effectively and make it one of the promising candidates for its applications in wearable electronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amjadi M, Kyung K, Park I (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater 26:1678–1698CrossRef Amjadi M, Kyung K, Park I (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater 26:1678–1698CrossRef
Zurück zum Zitat Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef
Zurück zum Zitat Cai G, Xu Z, Yang M, Tang B, Wang X (2017a) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448CrossRef Cai G, Xu Z, Yang M, Tang B, Wang X (2017a) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448CrossRef
Zurück zum Zitat Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017b) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017b) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef
Zurück zum Zitat Cataldi P, Ceseracciu L, Athanassiou A (2017) Healable cotton-graphene nanocomposite conductor for wearable electronics. Acs Appl Mater Interfaces 9:13825–13830CrossRefPubMed Cataldi P, Ceseracciu L, Athanassiou A (2017) Healable cotton-graphene nanocomposite conductor for wearable electronics. Acs Appl Mater Interfaces 9:13825–13830CrossRefPubMed
Zurück zum Zitat Chatterjee A, Nivas Kumar M, Maity S (2017) Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles. J Text Inst 108:1910–1916CrossRef Chatterjee A, Nivas Kumar M, Maity S (2017) Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles. J Text Inst 108:1910–1916CrossRef
Zurück zum Zitat Chen F, Liu X, Yang H, Dong B, Zhou Y, Chen D, Hu H, Xiao X, Fan D, Zhang C, Cheng F, Cao Y, Yuan T, Liang Z, Li J, Wang S, Xu W (2016) A simple onestep approach to fabrication of highly hydrophobic silk fabrics. Appl Surf Sci 360:207–212CrossRef Chen F, Liu X, Yang H, Dong B, Zhou Y, Chen D, Hu H, Xiao X, Fan D, Zhang C, Cheng F, Cao Y, Yuan T, Liang Z, Li J, Wang S, Xu W (2016) A simple onestep approach to fabrication of highly hydrophobic silk fabrics. Appl Surf Sci 360:207–212CrossRef
Zurück zum Zitat Choi GR, Park HK, Huh H, Kim YJ, Ham H, Kim HW, Lim KT, Kim SY, Kang I (2016) Strain sensing characteristics of rubbery carbon nanotube composite for flexible sensors. J Nanosci Nanotechnol 16:1607–1611CrossRefPubMed Choi GR, Park HK, Huh H, Kim YJ, Ham H, Kim HW, Lim KT, Kim SY, Kang I (2016) Strain sensing characteristics of rubbery carbon nanotube composite for flexible sensors. J Nanosci Nanotechnol 16:1607–1611CrossRefPubMed
Zurück zum Zitat Egami Y, Suzuki K, Tanaka T, Yasuhara T, Higuchi E, Inoue H (2011) Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles. Synth Met 161:219–224CrossRef Egami Y, Suzuki K, Tanaka T, Yasuhara T, Higuchi E, Inoue H (2011) Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles. Synth Met 161:219–224CrossRef
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324(1530–1534):911 Geim AK (2009) Graphene: status and prospects. Science 324(1530–1534):911
Zurück zum Zitat Gu WL, Zhao YN (2011) Graphene modified cotton textiles. Adv Mater Res 331:93–96CrossRef Gu WL, Zhao YN (2011) Graphene modified cotton textiles. Adv Mater Res 331:93–96CrossRef
Zurück zum Zitat Guillén C, Herrero J (2006) High conductivity and transparent ZnO: Al films prepared at low temperature by DC and MF magnetron sputtering. Thin Solid Films 515:640–643CrossRef Guillén C, Herrero J (2006) High conductivity and transparent ZnO: Al films prepared at low temperature by DC and MF magnetron sputtering. Thin Solid Films 515:640–643CrossRef
Zurück zum Zitat Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee S, Yang MY, Ko SH (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26:5808–5814CrossRefPubMed Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee S, Yang MY, Ko SH (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26:5808–5814CrossRefPubMed
Zurück zum Zitat Han S, Hong S, Yeo J, Kim D, Kang B, Yang MY, Ko SH (2015) Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater 27:6396CrossRef Han S, Hong S, Yeo J, Kim D, Kang B, Yang MY, Ko SH (2015) Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater 27:6396CrossRef
Zurück zum Zitat Ji HL, Park N, Kim BG (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374CrossRef Ji HL, Park N, Kim BG (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374CrossRef
Zurück zum Zitat Jiang SX, Qin WF, Tao XM (2011) Surface characterization of sputter silver-coated polyester fiber. Fibers Polym 12:616–619CrossRef Jiang SX, Qin WF, Tao XM (2011) Surface characterization of sputter silver-coated polyester fiber. Fibers Polym 12:616–619CrossRef
Zurück zum Zitat Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172CrossRef Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172CrossRef
Zurück zum Zitat Kim KK, Hong S, Cho HM, Lee J, Suh YD, Ham J, Ko SH (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15:5240–5247CrossRefPubMed Kim KK, Hong S, Cho HM, Lee J, Suh YD, Ham J, Ko SH (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15:5240–5247CrossRefPubMed
Zurück zum Zitat Lee HM, Lee HB, Jung DS, Yun JY, Ko SH, Park SB (2012) Solution processed aluminum paper for flexible electronics. Langmuir Acs J Surf Colloids 28:13127–13135CrossRef Lee HM, Lee HB, Jung DS, Yun JY, Ko SH, Park SB (2012) Solution processed aluminum paper for flexible electronics. Langmuir Acs J Surf Colloids 28:13127–13135CrossRef
Zurück zum Zitat Ma H, Wu W, Cao J, Yue B, Zhang H (2017) Network structure and electromechanical properties of viscose-graphene conductive yarn assembles. Carbon 114:731–739CrossRef Ma H, Wu W, Cao J, Yue B, Zhang H (2017) Network structure and electromechanical properties of viscose-graphene conductive yarn assembles. Carbon 114:731–739CrossRef
Zurück zum Zitat Miao D, Zhao H, Peng Q (2015) Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering. Ceram Int 41:1595–1601CrossRef Miao D, Zhao H, Peng Q (2015) Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering. Ceram Int 41:1595–1601CrossRef
Zurück zum Zitat Molina J, Zille A, Fernandez J, Souto AP, Bonastre J, Cases F (2015) Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide. Synth Met 204:110–121CrossRef Molina J, Zille A, Fernandez J, Souto AP, Bonastre J, Cases F (2015) Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide. Synth Met 204:110–121CrossRef
Zurück zum Zitat Nguyen M, Herszberg I, Paton R (1999) The shear properties of woven carbon fabric. Compos Struct 47:767–779CrossRef Nguyen M, Herszberg I, Paton R (1999) The shear properties of woven carbon fabric. Compos Struct 47:767–779CrossRef
Zurück zum Zitat Pang Y, Tian H, Tao LQ, Li YX, Wang XF, Deng NQ, Yang Y, Ren TL (2016) Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl Mater Interfaces 8:26458–26462CrossRef Pang Y, Tian H, Tao LQ, Li YX, Wang XF, Deng NQ, Yang Y, Ren TL (2016) Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl Mater Interfaces 8:26458–26462CrossRef
Zurück zum Zitat Pasta M, Hu L, La Mantia F, Cui Y (2012) Electrodeposited gold nanoparticles on carbon nanotube-textile: anode material for glucose alkaline fuel cells. Electrochem Commun 19:81–84CrossRef Pasta M, Hu L, La Mantia F, Cui Y (2012) Electrodeposited gold nanoparticles on carbon nanotube-textile: anode material for glucose alkaline fuel cells. Electrochem Commun 19:81–84CrossRef
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
Zurück zum Zitat Peng L, Guo R, Lan J (2017) Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering. J Ind Text 1:1–12 Peng L, Guo R, Lan J (2017) Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering. J Ind Text 1:1–12
Zurück zum Zitat Rafiee MA (2011) Graphene. Diss Theses Gradworks 442(282–286):1012 Rafiee MA (2011) Graphene. Diss Theses Gradworks 442(282–286):1012
Zurück zum Zitat Rani S, Kumar M, Kumar R, Kumar D, Sharma S, Singh G (2014) Characterization and dispersibility of improved thermally stable amide functionalized graphene oxide. Mater Res Bull 60:143–149CrossRef Rani S, Kumar M, Kumar R, Kumar D, Sharma S, Singh G (2014) Characterization and dispersibility of improved thermally stable amide functionalized graphene oxide. Mater Res Bull 60:143–149CrossRef
Zurück zum Zitat Ryu S, Lee P, Chou JB, Xu RZ, Zhao R, Hart AJ, Kim SG (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936CrossRefPubMed Ryu S, Lee P, Chou JB, Xu RZ, Zhao R, Hart AJ, Kim SG (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936CrossRefPubMed
Zurück zum Zitat Sahito IA, Sun KC, Arbab AA, Qadir MB, Jeong SH (2015) Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydr Polym 130:299–306CrossRefPubMed Sahito IA, Sun KC, Arbab AA, Qadir MB, Jeong SH (2015) Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide. Carbohydr Polym 130:299–306CrossRefPubMed
Zurück zum Zitat Shih SJ, Chien IC (2013) Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol 237:436–441CrossRef Shih SJ, Chien IC (2013) Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol 237:436–441CrossRef
Zurück zum Zitat Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefPubMed Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefPubMed
Zurück zum Zitat Tian H, Shu Y, Cui YL, Mi WT, Yang Y, Xie D, Ren TL (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRefPubMed Tian H, Shu Y, Cui YL, Mi WT, Yang Y, Xie D, Ren TL (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705CrossRefPubMed
Zurück zum Zitat Wang H, Liu Z, Ding J (2016) Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28:4998–5007CrossRefPubMed Wang H, Liu Z, Ding J (2016) Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28:4998–5007CrossRefPubMed
Zurück zum Zitat Wu HW, Yang RY, Hsiung CM (2013) Characterization of aluminum-doped zinc oxide thin films by RF magnetron sputtering at different substrate temperature and sputtering power. J Mater Sci Mater Electron 24:166–171CrossRef Wu HW, Yang RY, Hsiung CM (2013) Characterization of aluminum-doped zinc oxide thin films by RF magnetron sputtering at different substrate temperature and sputtering power. J Mater Sci Mater Electron 24:166–171CrossRef
Zurück zum Zitat Yang N, Koichi Aoki A, Nagasawa H (2004) Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J Phys Chem B 108:15027–15032CrossRef Yang N, Koichi Aoki A, Nagasawa H (2004) Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J Phys Chem B 108:15027–15032CrossRef
Zurück zum Zitat Zhang MC, Wang CY, Wang Q, Jian MQ, Zhang YY (2016) Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces 8:20894–20899CrossRefPubMed Zhang MC, Wang CY, Wang Q, Jian MQ, Zhang YY (2016) Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces 8:20894–20899CrossRefPubMed
Zurück zum Zitat Zhao H, Cui J (2007) Electroless plating of silver on AZ31 magnesium alloy substrate. Surf Coat Technol 201:4512–4517CrossRef Zhao H, Cui J (2007) Electroless plating of silver on AZ31 magnesium alloy substrate. Surf Coat Technol 201:4512–4517CrossRef
Zurück zum Zitat Zhong WB, Liu QZ, Wu YZ, Wang YD, Qing X, Li MF, Liu K, Wang WW, Wang D (2016) A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112CrossRefPubMed Zhong WB, Liu QZ, Wu YZ, Wang YD, Qing X, Li MF, Liu K, Wang WW, Wang D (2016) A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112CrossRefPubMed
Metadaten
Titel
Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering
verfasst von
Shan He
Binjie Xin
Zhuoming Chen
Yan Liu
Publikationsdatum
03.05.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1821-4

Weitere Artikel der Ausgabe 6/2018

Cellulose 6/2018 Zur Ausgabe