Skip to main content
Erschienen in: Wireless Networks 7/2023

10.05.2023

Flight data outlier detection by constrained LSTM-autoencoder

verfasst von: Long Gao, Congan Xu, Fengqin Wang, Junfeng Wu, Hang Su

Erschienen in: Wireless Networks | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either learning descriptive features by matching the distribution of inliers with autoencoder-based models, or learning semantic features by mapping inliers into a hyper-sphere with kernel functions, while the information of the given class samples is insufficiently utilized. To address this issue, in this paper, we propose a novel multi-task-based model that can jointly learn descriptive and semantic features. The proposed model is based on an LSTM autoencoder to reconstruct the inputs, and we design a constraining layer to pull the learned semantic features together. By jointly training two branches of the model, the proposed method can learn to fit the distribution of inputs as well as map inliers into a tight hyper-sphere, thus making outliers and inliers more distinguishable. Experimental results on the real flight dataset demonstrate the effectiveness of the proposed method compared to previous algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Retrieved from University of Minnesota Digital Conservancy, 2022. Available at https://​conservancy.​umn.​edu/​handle/​11299/​163580.
 
Literatur
1.
Zurück zum Zitat Budalakoti, S., Srivastava, A. N., & Otey, M. E. (2009). Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety. IEEE Transactions on Systems Man and Cybernetics Part C, 39(1), 101–113.CrossRef Budalakoti, S., Srivastava, A. N., & Otey, M. E. (2009). Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety. IEEE Transactions on Systems Man and Cybernetics Part C, 39(1), 101–113.CrossRef
2.
Zurück zum Zitat Matthews, B., Srivsatava, A.N., Schade, J., Schleicher, D.R., & Kiniry, M. (2013). Discovery of abnormal flight patterns in flight track data. In: 2013 Aviation Technology, Integration, and Operations Conference. Matthews, B., Srivsatava, A.N., Schade, J., Schleicher, D.R., & Kiniry, M. (2013). Discovery of abnormal flight patterns in flight track data. In: 2013 Aviation Technology, Integration, and Operations Conference.
3.
Zurück zum Zitat Li, L., Das, S., Hansman, R. J., Palacios, R., & Srivastava, A. N. (2015). Analysis of flight data using clustering techniques for detecting abnormal operations. Journal of Aerospace Computing, Information, and Communication, 12(9), 587–598. Li, L., Das, S., Hansman, R. J., Palacios, R., & Srivastava, A. N. (2015). Analysis of flight data using clustering techniques for detecting abnormal operations. Journal of Aerospace Computing, Information, and Communication, 12(9), 587–598.
4.
Zurück zum Zitat Bay, S.D., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2003) Bay, S.D., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2003)
5.
Zurück zum Zitat Olkopf, B.S., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support vector method for novelty detection. In: Advances in Neural Information Processing Systems. Olkopf, B.S., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support vector method for novelty detection. In: Advances in Neural Information Processing Systems.
6.
Zurück zum Zitat Tax, D., & Duin, R. (1999). Support vector domain description. Pattern recognition letters. Tax, D., & Duin, R. (1999). Support vector domain description. Pattern recognition letters.
7.
Zurück zum Zitat Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 62, 121–134.CrossRef Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 62, 121–134.CrossRef
8.
Zurück zum Zitat Camerini, V., Coppotelli, G., & Bendisch, S. (2018). Fault detection in operating helicopter drivetrain components based on support vector data description. Aerospace Science and Technology, 73, 48–60.CrossRef Camerini, V., Coppotelli, G., & Bendisch, S. (2018). Fault detection in operating helicopter drivetrain components based on support vector data description. Aerospace Science and Technology, 73, 48–60.CrossRef
9.
Zurück zum Zitat Ruff, L., Vandermeulen, R. A., Görnitz, N., Deecke, L., & Kloft, M. (2018). Deep one-class classification. International Conference on Machine Learning, 24, 11053. Ruff, L., Vandermeulen, R. A., Görnitz, N., Deecke, L., & Kloft, M. (2018). Deep one-class classification. International Conference on Machine Learning, 24, 11053.
10.
Zurück zum Zitat Rong-Xiao, G. (2021). Anomaly detection method for UAV sensor data based on LSTM–OCSVM. Journal of Chinese Computer Systems, 85, 700–705. Rong-Xiao, G. (2021). Anomaly detection method for UAV sensor data based on LSTM–OCSVM. Journal of Chinese Computer Systems, 85, 700–705.
11.
Zurück zum Zitat Tu, Y., Lin, Y., Zha, H., Zhang, J., Wang, Y., Gui, G., & Mao, S. (2022). Large-scale real-world radio signal recognition with deep learning. Chinese Journal of Aeronautics, 35(9), 35–48.CrossRef Tu, Y., Lin, Y., Zha, H., Zhang, J., Wang, Y., Gui, G., & Mao, S. (2022). Large-scale real-world radio signal recognition with deep learning. Chinese Journal of Aeronautics, 35(9), 35–48.CrossRef
13.
Zurück zum Zitat Liu, S., Li, Y., & Fu, W. (2022). Human-centered attention-aware networks for action recognition. International Journal of Intelligent Systems, 37, 10968–10987.CrossRef Liu, S., Li, Y., & Fu, W. (2022). Human-centered attention-aware networks for action recognition. International Journal of Intelligent Systems, 37, 10968–10987.CrossRef
14.
Zurück zum Zitat Wu, Q., Li, Y., Lin, Y., & Zhou, R. (2018). Weighted sparse image classification based on low rank representation. CMC Computer Materials Continua, 7, 15. Wu, Q., Li, Y., Lin, Y., & Zhou, R. (2018). Weighted sparse image classification based on low rank representation. CMC Computer Materials Continua, 7, 15.
15.
Zurück zum Zitat Luo, W., Wen, L., & Gao, S. (2017). Remembering history with convolutional LSTM for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME) Luo, W., Wen, L., & Gao, S. (2017). Remembering history with convolutional LSTM for anomaly detection. In: 2017 IEEE International conference on multimedia and expo (ICME)
16.
Zurück zum Zitat Shabtai, A., & Habler, I. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages Shabtai, A., & Habler, I. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages
17.
Zurück zum Zitat Jianli, D., Yunkai, Z., Jing, W., & Huaichao, W. (2019). Ads-b anomaly data detection model based on deep learning. Acta Aeronautica et Astronautica Sinica, 40(11), 452. Jianli, D., Yunkai, Z., Jing, W., & Huaichao, W. (2019). Ads-b anomaly data detection model based on deep learning. Acta Aeronautica et Astronautica Sinica, 40(11), 452.
18.
Zurück zum Zitat Zhong, J., Zhang, Y., Wang, J., Luo, C., & Miao, Q. (2022). Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation. IEEE Transactions on Reliability, 1, 71. Zhong, J., Zhang, Y., Wang, J., Luo, C., & Miao, Q. (2022). Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation. IEEE Transactions on Reliability, 1, 71.
19.
Zurück zum Zitat Reddy, K.K., Sarkar, S., Venugopalan, V., & Giering, M. (2016). Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach. In: Annual Conference of the PHM Society. Reddy, K.K., Sarkar, S., Venugopalan, V., & Giering, M. (2016). Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach. In: Annual Conference of the PHM Society.
20.
Zurück zum Zitat Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y. (2019). Self-adversarial variational autoencoder with gaussian anomaly prior distribution for anomaly detection. Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., Yang, Y. (2019). Self-adversarial variational autoencoder with gaussian anomaly prior distribution for anomaly detection.
21.
Zurück zum Zitat Donahue, J., Krhenbühl, P., & Darrell, T. (2016). Adversarial feature learning. Donahue, J., Krhenbühl, P., & Darrell, T. (2016). Adversarial feature learning.
22.
Zurück zum Zitat Wang Fengqin, W. L., & Long, G. (2022). UAV flight data anomaly detection algorithm based on LSTM–GAN. Journal of Chinese Inertial Technology, 45, 264–271. Wang Fengqin, W. L., & Long, G. (2022). UAV flight data anomaly detection algorithm based on LSTM–GAN. Journal of Chinese Inertial Technology, 45, 264–271.
23.
Zurück zum Zitat Villa-Peacuterez, M.E.A.-C. (2021). Semi-supervised anomaly detection algorithms: A comparative summary and future research directions. Knowledge-Based Systems, 785, 106878.CrossRef Villa-Peacuterez, M.E.A.-C. (2021). Semi-supervised anomaly detection algorithms: A comparative summary and future research directions. Knowledge-Based Systems, 785, 106878.CrossRef
24.
Zurück zum Zitat Zhu, Y., Du, C., Liu, Z., Chen, Y.-B., & Zhao, Y. (2022). A turboshaft aeroengine fault detection method based on one-class support vector machine and transfer learning. Journal of Aerospace Engineering, 35, 04022085.CrossRef Zhu, Y., Du, C., Liu, Z., Chen, Y.-B., & Zhao, Y. (2022). A turboshaft aeroengine fault detection method based on one-class support vector machine and transfer learning. Journal of Aerospace Engineering, 35, 04022085.CrossRef
25.
Zurück zum Zitat Jiang, Y., Liu, R., Le, N., & Zheng, Y. (2019). A method for the outlier flights detection of the final approach based on foqa data. In: 2019 IEEE 1st international conference on civil aviation safety and information technology (ICCASIT). Jiang, Y., Liu, R., Le, N., & Zheng, Y. (2019). A method for the outlier flights detection of the final approach based on foqa data. In: 2019 IEEE 1st international conference on civil aviation safety and information technology (ICCASIT).
26.
Zurück zum Zitat Zhanping, S. W. J. T. F. (2014). Flight data novelty detection method based on improved SVDD. Chinese Journal of Scientific Instrument, 35, 932–939. Zhanping, S. W. J. T. F. (2014). Flight data novelty detection method based on improved SVDD. Chinese Journal of Scientific Instrument, 35, 932–939.
27.
Zurück zum Zitat Kou, L., Chen, J., & Qin, Y. (2022). The robust multi-scale deep-SVDD model for anomaly online detection of rolling bearings. Sensors, 22(15), 5681.CrossRef Kou, L., Chen, J., & Qin, Y. (2022). The robust multi-scale deep-SVDD model for anomaly online detection of rolling bearings. Sensors, 22(15), 5681.CrossRef
28.
Zurück zum Zitat Zhou, Y., Liang, X., Zhang, W., Zhang, L., & Song, X. (2021). VAE-based deep SVDD for anomaly detection. Neurocomputing, 453, 131.CrossRef Zhou, Y., Liang, X., Zhang, W., Zhang, L., & Song, X. (2021). VAE-based deep SVDD for anomaly detection. Neurocomputing, 453, 131.CrossRef
29.
Zurück zum Zitat Ji, Y., Wang, L., Wu, W., Shao, H., & Feng, Y. (2020). A method for LSTM-based trajectory modelling and abnormal trajectory detection. IEEE Access, 99, 1–1. Ji, Y., Wang, L., Wu, W., Shao, H., & Feng, Y. (2020). A method for LSTM-based trajectory modelling and abnormal trajectory detection. IEEE Access, 99, 1–1.
30.
Zurück zum Zitat Fried, A., & Last, M. (2021). Facing airborne attacks on ADS-b data with autoencoders. Computers and Security, 109(2), 102405.CrossRef Fried, A., & Last, M. (2021). Facing airborne attacks on ADS-b data with autoencoders. Computers and Security, 109(2), 102405.CrossRef
31.
Zurück zum Zitat Zhang, W., Hu, M., & Du, J. (2022). An end-to-end framework for flight trajectory data analysis based on deep autoencoder network. Aerospace Science and Technology, 127, 107726.CrossRef Zhang, W., Hu, M., & Du, J. (2022). An end-to-end framework for flight trajectory data analysis based on deep autoencoder network. Aerospace Science and Technology, 127, 107726.CrossRef
32.
Zurück zum Zitat Memarzadeh, M., Matthews, B., & Avrekh, I. (2020). Unsupervised anomaly detection in flight data using convolutional variational auto-encoder. Memarzadeh, M., Matthews, B., & Avrekh, I. (2020). Unsupervised anomaly detection in flight data using convolutional variational auto-encoder.
33.
Zurück zum Zitat Liu, S., Gao, P., Li, Y., Fu, W., & Ding, W. (2022). Multi-modal fusion network with complementarity and importance for emotion recognition. Information Sciences, 619, 679–694.CrossRef Liu, S., Gao, P., Li, Y., Fu, W., & Ding, W. (2022). Multi-modal fusion network with complementarity and importance for emotion recognition. Information Sciences, 619, 679–694.CrossRef
34.
Zurück zum Zitat Novitasari, S., Do, Q.T., Sakti, S., Lestari, D., & Nakamura, S. (2018). Multi-modal multi-task deep learning for speaker and emotion recognition of tv-series data. In: 2018 Oriental COCOSDA—international conference on speech database and assessments. Novitasari, S., Do, Q.T., Sakti, S., Lestari, D., & Nakamura, S. (2018). Multi-modal multi-task deep learning for speaker and emotion recognition of tv-series data. In: 2018 Oriental COCOSDA—international conference on speech database and assessments.
35.
Zurück zum Zitat Xing, H., Xiao, Z., Qu, R., Zhu, Z., & Zhao, B. (2022). An efficient federated distillation learning system for multi-task time series classification. IEEE Transactions on Instrumentation and Measurement, 1, 452. Xing, H., Xiao, Z., Qu, R., Zhu, Z., & Zhao, B. (2022). An efficient federated distillation learning system for multi-task time series classification. IEEE Transactions on Instrumentation and Measurement, 1, 452.
36.
Zurück zum Zitat Ling, C., Donghui, C., Fan, Y., & Jianling, S. (2021). A deep multi-task representation learning method for time series classification and retrieval. Information Sciences, 555, 17–32.MathSciNetCrossRefMATH Ling, C., Donghui, C., Fan, Y., & Jianling, S. (2021). A deep multi-task representation learning method for time series classification and retrieval. Information Sciences, 555, 17–32.MathSciNetCrossRefMATH
37.
Zurück zum Zitat Fu, X., Peng, Y., Liu, Y., Lin, Y., Gui, G., Gacanin, H., & Adachi, F. (2023). Semi-supervised specific emitter identification method using metric-adversarial training. IEEE Internet of Things Journal, 12, 1–1. Fu, X., Peng, Y., Liu, Y., Lin, Y., Gui, G., Gacanin, H., & Adachi, F. (2023). Semi-supervised specific emitter identification method using metric-adversarial training. IEEE Internet of Things Journal, 12, 1–1.
38.
Zurück zum Zitat Zhu, Q., Chen, J., Shi, D., Zhu, L., Bai, X., Duan, X., & Liu, Y. (2020). Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction. IEEE Transactions on Sustainable Energy, 11, 509–523.CrossRef Zhu, Q., Chen, J., Shi, D., Zhu, L., Bai, X., Duan, X., & Liu, Y. (2020). Learning temporal and spatial correlations jointly: A unified framework for wind speed prediction. IEEE Transactions on Sustainable Energy, 11, 509–523.CrossRef
39.
Zurück zum Zitat Wu, Q., Li, Y., & Lin, Y. (2019). Medical image restoration method via multiple nonlocal prior constraints. Journal of Intelligent and Fuzzy Systems, 38(4), 1–15. Wu, Q., Li, Y., & Lin, Y. (2019). Medical image restoration method via multiple nonlocal prior constraints. Journal of Intelligent and Fuzzy Systems, 38(4), 1–15.
40.
Zurück zum Zitat Zheng, L., Hongzhi, W., Xiaoou, D., & Tianyu, M. (2021). Industrial time series determinative anomaly detection based on constraint hypergraph. Knowledge-Based Systems, 233, 107548.CrossRef Zheng, L., Hongzhi, W., Xiaoou, D., & Tianyu, M. (2021). Industrial time series determinative anomaly detection based on constraint hypergraph. Knowledge-Based Systems, 233, 107548.CrossRef
41.
Zurück zum Zitat Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on anomaly detection for technical systems using LSTM networks. Computers in Industry, 131(3), 103498.CrossRef Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on anomaly detection for technical systems using LSTM networks. Computers in Industry, 131(3), 103498.CrossRef
42.
Zurück zum Zitat Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics, 228(10), 4568.CrossRef Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics, 228(10), 4568.CrossRef
43.
Zurück zum Zitat Geiger, B. C., & Kubin, G. (2020). Information bottleneck: Theory and applications in deep learning. Entropy (Basel, Switzerland), 22, 1408.CrossRef Geiger, B. C., & Kubin, G. (2020). Information bottleneck: Theory and applications in deep learning. Entropy (Basel, Switzerland), 22, 1408.CrossRef
45.
Zurück zum Zitat Abadi, M., Barham, P., Chen, J., Chen, Z., & Zhang, X. (2016). Tensorflow: A system for large-scale machine learning. USENIX Association. Abadi, M., Barham, P., Chen, J., Chen, Z., & Zhang, X. (2016). Tensorflow: A system for large-scale machine learning. USENIX Association.
46.
Zurück zum Zitat Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR abs/1412.6980. Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR abs/1412.6980.
47.
Zurück zum Zitat Hou, C., Liu, G., Tian, Q., Zhou, Z., Hua, L., & Lin, Y. (2022). Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain. IEEE Internet of Things Journal, 9(19), 19438–19449.CrossRef Hou, C., Liu, G., Tian, Q., Zhou, Z., Hua, L., & Lin, Y. (2022). Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain. IEEE Internet of Things Journal, 9(19), 19438–19449.CrossRef
Metadaten
Titel
Flight data outlier detection by constrained LSTM-autoencoder
verfasst von
Long Gao
Congan Xu
Fengqin Wang
Junfeng Wu
Hang Su
Publikationsdatum
10.05.2023
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2023
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03353-1

Weitere Artikel der Ausgabe 7/2023

Wireless Networks 7/2023 Zur Ausgabe

Neuer Inhalt