Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Flow Boiling of Water in a Microgap

verfasst von : Brandon M. Shadakofsky, Francis A Kulacki

Erschienen in: Flow Boiling of a Dilute Emulsion In Smooth and Rough Microgaps

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The relevant literature for flow boiling in microgaps is presented, with a focus on how the experimental conditions affect heat transfer and the fluid flow. Flow regimes in microgaps generally follow those seen at larger scales, though the validity of using the Taitel-Dukler map to predict the flow regime at a given experimental condition has not been proven. A comparison to heat transfer in microchannels is also provided. Experimental results of a systematic series of measurements are described for flow boiling of water in microgaps of several sizes and mass flux. Inlet flow to the heated surface is laminar and fully developed. Pressure drop and heat transfer coefficients are summarized graphically, and a correlation for the heat transfer coefficient is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
FC-77 is one of several Fluorinert™ fluids manufactured by 3M™, Inc., St. Paul, Minnesota. Fluorinert™ fluids are perfluorinated or fully fluorinated compounds, with all available carbon bond sites occupied by fluorine atoms. An example of a fully fluorinated compound is FC-72, whose chemical composition is C6F14. FC-77 is a perfluorinated compound whose chemical composition is C8F16O. Data are available for thermodynamic and transport properties of FC-77 at multimedia.​3m.​com/​mws/​media/​64893O/​fluorinert-electronic-liquid-fc-77.​pdf
 
2
The Novec™ HFE fluids are produced by 3M™, Inc. as an alternative to their Fluorinert™ FC fluids. The Novec™ fluids are hydrofluoroethers (HFEs), which are segregated chains, with one perfluorinated part of the chain being separated via an oxygen atom, or ether, from a portion of the chain that is fully hydrogenated, with all carbon bond sites being occupied by hydrogen. The Novec™ fluids have a much lower global warming potential than the Fluorinert™ fluids. Novec 7200 and 7300 have chemical compositions of C4F9OC2H5 and C7H3F13O, respectively. Their thermal and fluid transport properties can be obtained at https://www.3m.com/3M/en_US/novec-us/
 
Literatur
5.
Zurück zum Zitat Kandlikar, S.G.: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review. J. Heat Trans. 134, 134001- 1-15 (2012)CrossRef Kandlikar, S.G.: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review. J. Heat Trans. 134, 134001- 1-15 (2012)CrossRef
8.
Zurück zum Zitat Moghaddam, S., Kiger, K.: Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I. Experimental investigation. Int. J. Heat Mass Transf. 52, 1284–1294 (2009)MATHCrossRef Moghaddam, S., Kiger, K.: Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I. Experimental investigation. Int. J. Heat Mass Transf. 52, 1284–1294 (2009)MATHCrossRef
9.
Zurück zum Zitat Moghaddam, S., Kiger, K.: Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-II. Theoretical analysis. Int. J. Heat Mass Transf. 52, 1295–1303 (2009)MATHCrossRef Moghaddam, S., Kiger, K.: Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-II. Theoretical analysis. Int. J. Heat Mass Transf. 52, 1295–1303 (2009)MATHCrossRef
10.
Zurück zum Zitat Bigham, S., Moghaddam, S.: Microscale study of mechanisms of heat transfer during flow boiling in a microchannel. Int. J. Heat Mass Transf. 88, 111–121 (2015)CrossRef Bigham, S., Moghaddam, S.: Microscale study of mechanisms of heat transfer during flow boiling in a microchannel. Int. J. Heat Mass Transf. 88, 111–121 (2015)CrossRef
11.
Zurück zum Zitat Bigham, S., Moghaddam, S.: Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process. Appl. Phys. Lett. 107, 244103- 1-5 (2015)CrossRef Bigham, S., Moghaddam, S.: Role of bubble growth dynamics on microscale heat transfer events in microchannel flow boiling process. Appl. Phys. Lett. 107, 244103- 1-5 (2015)CrossRef
12.
Zurück zum Zitat Bigham, S., Moghaddam, S.: Physics of the microchannel flow boiling process and comparison with the existing theories. J. Heat Transf. 139, 111503- 1-10 (2017)CrossRef Bigham, S., Moghaddam, S.: Physics of the microchannel flow boiling process and comparison with the existing theories. J. Heat Transf. 139, 111503- 1-10 (2017)CrossRef
13.
Zurück zum Zitat Brooks, C.S., Hibiki, T.: Wall nucleation modeling in subcooled boiling flow. Int. J. Heat Mass Transf. 86, 183–196 (2015)CrossRef Brooks, C.S., Hibiki, T.: Wall nucleation modeling in subcooled boiling flow. Int. J. Heat Mass Transf. 86, 183–196 (2015)CrossRef
14.
Zurück zum Zitat Karayiannis, T.G., Mahmoud, M.M.: Flow boiling in microchannels: fundamentals and applications. Appl. Therm. Eng. 115, 1372–1397 (2017)CrossRef Karayiannis, T.G., Mahmoud, M.M.: Flow boiling in microchannels: fundamentals and applications. Appl. Therm. Eng. 115, 1372–1397 (2017)CrossRef
15.
Zurück zum Zitat Shadakofsky, B.M.: Flow boiling of a dilute emulsion on a microporous surface. Thesis, University of Minnesota (2019) Shadakofsky, B.M.: Flow boiling of a dilute emulsion on a microporous surface. Thesis, University of Minnesota (2019)
17.
Zurück zum Zitat Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Onboard device encapsulation with two-phase cooling. J. Therm. Sci. Eng. Appl. 10(2), 021002- 1-13 (2018)CrossRef Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Onboard device encapsulation with two-phase cooling. J. Therm. Sci. Eng. Appl. 10(2), 021002- 1-13 (2018)CrossRef
21.
Zurück zum Zitat Kandlikar, S.G.: Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Thermal Fluid Sci. 26, 389–407 (2002)CrossRef Kandlikar, S.G.: Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Thermal Fluid Sci. 26, 389–407 (2002)CrossRef
22.
Zurück zum Zitat Thome, J.R.: Boiling in microchannels: a review of experiment and theory. Int. J. Heat Fluid Flow. 25, 128–139 (2004)CrossRef Thome, J.R.: Boiling in microchannels: a review of experiment and theory. Int. J. Heat Fluid Flow. 25, 128–139 (2004)CrossRef
23.
Zurück zum Zitat Mudawar, I.: Two-phase microchannel heat sinks: theory, applications and limitations. J. Electron. Packag. 133, 041002- 1-31 (2011)CrossRef Mudawar, I.: Two-phase microchannel heat sinks: theory, applications and limitations. J. Electron. Packag. 133, 041002- 1-31 (2011)CrossRef
24.
Zurück zum Zitat Saha, S.K., Celata, G.P., Kandlikar, S.G.: Thermofluid dynamics of boiling in microchannels. In: Cho, Y.I., Greene, G.A. (eds.) Advances in Heat Transfer, vol. 43, pp. 77–226. Elsevier, London (2011) Saha, S.K., Celata, G.P., Kandlikar, S.G.: Thermofluid dynamics of boiling in microchannels. In: Cho, Y.I., Greene, G.A. (eds.) Advances in Heat Transfer, vol. 43, pp. 77–226. Elsevier, London (2011)
25.
Zurück zum Zitat Kim, D.W., Rahim, E., Bar-Cohen, A., Han, B.: Thermofluid characteristics of two-phase flow in micro-gap channels. In: 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 979–992 (2008) Kim, D.W., Rahim, E., Bar-Cohen, A., Han, B.: Thermofluid characteristics of two-phase flow in micro-gap channels. In: 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 979–992 (2008)
26.
Zurück zum Zitat Bar-Cohen, A., Rahim, E.: Modeling and prediction of two-phase microgap channel heat transfer characteristics. Heat Trans. Eng. 30(8), 601–625 (2009)CrossRef Bar-Cohen, A., Rahim, E.: Modeling and prediction of two-phase microgap channel heat transfer characteristics. Heat Trans. Eng. 30(8), 601–625 (2009)CrossRef
27.
Zurück zum Zitat Kabov, O.A., Zaitsev, D.V., Chevedra, V.V., Bar-Cohen, A.: Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels. Exp. Thermal Fluid Sci. 35, 825–831 (2011)CrossRef Kabov, O.A., Zaitsev, D.V., Chevedra, V.V., Bar-Cohen, A.: Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels. Exp. Thermal Fluid Sci. 35, 825–831 (2011)CrossRef
28.
Zurück zum Zitat Bar-Cohen, A., Sheehan, J.R., Rahim, E.: Two-phase thermal transport in microgap channels- theory, experimental results, and predictive relations. Microgravity Sci. Technol. 24, 1–15 (2012)CrossRef Bar-Cohen, A., Sheehan, J.R., Rahim, E.: Two-phase thermal transport in microgap channels- theory, experimental results, and predictive relations. Microgravity Sci. Technol. 24, 1–15 (2012)CrossRef
29.
Zurück zum Zitat Harirchian, T., Garimella, S.V.: Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. Int. J. Multiphase Flow. 35, 349–362 (2009)CrossRef Harirchian, T., Garimella, S.V.: Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. Int. J. Multiphase Flow. 35, 349–362 (2009)CrossRef
30.
Zurück zum Zitat Harirchian, T., Garimella, S.V.: A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. Int. J. Heat Mass Transf. 53, 2694–2702 (2010)CrossRef Harirchian, T., Garimella, S.V.: A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. Int. J. Heat Mass Transf. 53, 2694–2702 (2010)CrossRef
31.
Zurück zum Zitat Alam, T., Lee, P.S., Yap, C.R., Jin, L.: Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel. Int. J. Multiphase Flow. 42, 164–174 (2012)CrossRef Alam, T., Lee, P.S., Yap, C.R., Jin, L.: Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel. Int. J. Multiphase Flow. 42, 164–174 (2012)CrossRef
32.
Zurück zum Zitat Alam, T., Lee, P.S., Yap, C.R., Jin, L., Balasubramanian, K.: Experimental investigation and flow visualization to determine the optimum dimension range of microgap heat sinks. Int. J. Heat Mass Transf. 55, 7623–7634 (2012)CrossRef Alam, T., Lee, P.S., Yap, C.R., Jin, L., Balasubramanian, K.: Experimental investigation and flow visualization to determine the optimum dimension range of microgap heat sinks. Int. J. Heat Mass Transf. 55, 7623–7634 (2012)CrossRef
33.
Zurück zum Zitat Alam, T., Lee, P.S., Yap, C.R., Jin, L.: A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hot spot mitigation. Int. J. Heat Mass Transf. 58, 335–347 (2013)CrossRef Alam, T., Lee, P.S., Yap, C.R., Jin, L.: A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hot spot mitigation. Int. J. Heat Mass Transf. 58, 335–347 (2013)CrossRef
34.
Zurück zum Zitat Alam, T., Lee, P.S., Yap, C.R.: Effects of surface roughness on flow boiling in silicon microgap heat sinks. Int. J. Heat Mass Transf. 64, 28–41 (2013)CrossRef Alam, T., Lee, P.S., Yap, C.R.: Effects of surface roughness on flow boiling in silicon microgap heat sinks. Int. J. Heat Mass Transf. 64, 28–41 (2013)CrossRef
35.
Zurück zum Zitat Alam, T., Lee, P.S., Jin, L.: Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis Springer Briefs in Applied Science and Technology, Thermal Engineering and Applied Science. Springer, New York (2014)CrossRef Alam, T., Lee, P.S., Jin, L.: Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis Springer Briefs in Applied Science and Technology, Thermal Engineering and Applied Science. Springer, New York (2014)CrossRef
36.
Zurück zum Zitat Taitel, Y.: Flow pattern transition in two phase flow. In: Proceedings of the 9th International Heat Transfer Conference, pp. 237–254 (1990)CrossRef Taitel, Y.: Flow pattern transition in two phase flow. In: Proceedings of the 9th International Heat Transfer Conference, pp. 237–254 (1990)CrossRef
37.
Zurück zum Zitat Yang, Y., Fujita, Y.: Flow boiling heat transfer and flow pattern in rectangular channel of mini-gap. In: 2nd International Conference on Microchannels and Minichannels, pp. 573–580 (2004)CrossRef Yang, Y., Fujita, Y.: Flow boiling heat transfer and flow pattern in rectangular channel of mini-gap. In: 2nd International Conference on Microchannels and Minichannels, pp. 573–580 (2004)CrossRef
38.
Zurück zum Zitat Lee, H.J., Lee, S.Y.: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. Int. J. Multiphase Flow. 27(12), 2043–2062 (2001)MATHCrossRef Lee, H.J., Lee, S.Y.: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. Int. J. Multiphase Flow. 27(12), 2043–2062 (2001)MATHCrossRef
39.
Zurück zum Zitat Geisler, K.J.L., Bar-Cohen, A.: Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels. Int. J. Heat Mass Transf. 52, 2427–2436 (2009)CrossRef Geisler, K.J.L., Bar-Cohen, A.: Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels. Int. J. Heat Mass Transf. 52, 2427–2436 (2009)CrossRef
40.
Zurück zum Zitat Kim, D.W., Rahim, E., Bar-Cohen, A.: Direct submount cooling of high-power LEDs. IEEE Trans. Compon. Packag. Technol. 33(4), 698–712 (2010)CrossRef Kim, D.W., Rahim, E., Bar-Cohen, A.: Direct submount cooling of high-power LEDs. IEEE Trans. Compon. Packag. Technol. 33(4), 698–712 (2010)CrossRef
41.
Zurück zum Zitat Janssen, D.D., Dixon, J.M., Young, S.J., Kulacki, F.A.: Flow boiling in a short narrow Gap Channel. In: Proceedings of the ASME 2013 Summer Heat Transfer Conference, p. HT2013-17437- 1-13 (2013) Janssen, D.D., Dixon, J.M., Young, S.J., Kulacki, F.A.: Flow boiling in a short narrow Gap Channel. In: Proceedings of the ASME 2013 Summer Heat Transfer Conference, p. HT2013-17437- 1-13 (2013)
42.
Zurück zum Zitat Janssen, D.D., Dixon, J.M., Young, S.J., Kulacki, F.A.: Flow boiling in an in-line set of short narrow gap channels. J. Heat Transf. 137, 111501- 1-12 (2015)CrossRef Janssen, D.D., Dixon, J.M., Young, S.J., Kulacki, F.A.: Flow boiling in an in-line set of short narrow gap channels. J. Heat Transf. 137, 111501- 1-12 (2015)CrossRef
43.
Zurück zum Zitat Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Electronics cooling with onboard conformal encapsulation. In: 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 245–253 (2016)CrossRef Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Electronics cooling with onboard conformal encapsulation. In: 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 245–253 (2016)CrossRef
44.
Zurück zum Zitat Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Multidevice cooling with flow boiling in a variable microgap. J. Therm. Sci. Eng. Appl. 10(6), 061014- 1-8 (2018)CrossRef Young, S.J., Janssen, D., Wenzel, E.A., Shadakofsky, B.M., Kulacki, F.A.: Multidevice cooling with flow boiling in a variable microgap. J. Therm. Sci. Eng. Appl. 10(6), 061014- 1-8 (2018)CrossRef
45.
Zurück zum Zitat Jacobi, A.M., Thome, J.R.: Heat transfer model for evaporation of elongated bubble flows in microchannels. J. Heat Transf. 124, 1131–1136 (2002)CrossRef Jacobi, A.M., Thome, J.R.: Heat transfer model for evaporation of elongated bubble flows in microchannels. J. Heat Transf. 124, 1131–1136 (2002)CrossRef
46.
Zurück zum Zitat Thome, J.R., Dupont, V., Jacobi, A.M.: Heat transfer model for evaporation in microchannels. Part I: presentation of the model. Int. J. Heat Mass Transf. 47, 3375–3385 (2004)MATHCrossRef Thome, J.R., Dupont, V., Jacobi, A.M.: Heat transfer model for evaporation in microchannels. Part I: presentation of the model. Int. J. Heat Mass Transf. 47, 3375–3385 (2004)MATHCrossRef
47.
Zurück zum Zitat Dupont, V., Thome, J.R., Jacobi, A.M.: Heat transfer model for evaporation in microchannels. Part II: comparison with the database. Int. J. Heat Mass Transf. 47, 3387–3401 (2004)MATHCrossRef Dupont, V., Thome, J.R., Jacobi, A.M.: Heat transfer model for evaporation in microchannels. Part II: comparison with the database. Int. J. Heat Mass Transf. 47, 3387–3401 (2004)MATHCrossRef
48.
Zurück zum Zitat Magnini, M., Thome, J.R.: An updated three-zone heat transfer model for slug flow boiling in microchannels. Int. J. Multiphase Flow. 91, 296–314 (2017)MathSciNetCrossRef Magnini, M., Thome, J.R.: An updated three-zone heat transfer model for slug flow boiling in microchannels. Int. J. Multiphase Flow. 91, 296–314 (2017)MathSciNetCrossRef
49.
Zurück zum Zitat Mikic, B.B., Rohsenow, W.M.: A new correlation of pool boiling data including the effect of heating surface characteristics. J. Heat Transf. 91, 245–250 (1969)CrossRef Mikic, B.B., Rohsenow, W.M.: A new correlation of pool boiling data including the effect of heating surface characteristics. J. Heat Transf. 91, 245–250 (1969)CrossRef
50.
Zurück zum Zitat Demiray, F., Kim, J.: Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int. J. Heat Mass Transf. 47, 3257–3268 (2004)CrossRef Demiray, F., Kim, J.: Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int. J. Heat Mass Transf. 47, 3257–3268 (2004)CrossRef
51.
Zurück zum Zitat Harirchian, T., Garimella, S.V.: Microchannel size effects on local flow boiling heat transfer to a dielectric liquid. Int. J. Heat Mass Transf. 51, 3724–3735 (2008)MATHCrossRef Harirchian, T., Garimella, S.V.: Microchannel size effects on local flow boiling heat transfer to a dielectric liquid. Int. J. Heat Mass Transf. 51, 3724–3735 (2008)MATHCrossRef
52.
Zurück zum Zitat Sheehan, J., Bar-Cohen, A.: Spatial and temporal wall temperature fluctuations in two-phase flow in microgap coolers. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, p. IMECE2010-40227- 1-8 (2010) Sheehan, J., Bar-Cohen, A.: Spatial and temporal wall temperature fluctuations in two-phase flow in microgap coolers. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, p. IMECE2010-40227- 1-8 (2010)
53.
Zurück zum Zitat Bar-Cohen, A., Wang, P.: Thermal management of on-chip hot Spot. J. Heat Transf. 134, 051017- 1-11 (2012)CrossRef Bar-Cohen, A., Wang, P.: Thermal management of on-chip hot Spot. J. Heat Transf. 134, 051017- 1-11 (2012)CrossRef
Metadaten
Titel
Flow Boiling of Water in a Microgap
verfasst von
Brandon M. Shadakofsky
Francis A Kulacki
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-27773-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.