Skip to main content

2023 | OriginalPaper | Buchkapitel

5. Flow Boiling on a Porous Surface

verfasst von : Brandon M. Shadakofsky, Francis A Kulacki

Erschienen in: Flow Boiling of a Dilute Emulsion In Smooth and Rough Microgaps

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The relevant literature regarding boiling of fluids on microporous surfaces is reviewed, including techniques for depositing microporous surfaces on a substrate. Focus is given to the effect of the microporous surface on the onset of nucleate boiling (ONB) and critical heat flux (CHF). Experimental data is then presented for boiling heat transfer and pressure drop in microgaps with microporous surfaces. The experimental data is compared to heat transfer and pressure drop at similar experimental conditions with no microporous surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
See Fig. 2.​3 for the emulsion droplet distribution, Figs. 2.​6, 2.​7, and 2.​8 for SEM images of the porous surfaces, and Table 2.​2 for the porosity of each surface. Although the emulsions have an average droplet size of 10.7 μm, there are droplets as large as 25–30 μm present in the flow. For Porous Surface 1, there are a few pores of ~20 μm, but most of the surface is densely packed with pores <5 μm, resulting in a lower porosity than the other two surfaces. Porous Surface 3 has many pores on the top ~20 μm across and greater, but the side view shows a densely packed surface with relatively few pores >10 μm. In distinction, Porous Surface 2 has many pores of ~30 μm on the top and through the thickness, resulting in a more open structure throughout.
 
Literatur
20.
Zurück zum Zitat El-Genk, M.S., Ali, A.F.: Enhanced nucleate boiling on copper micro-porous surfaces. Int. J. Multiphase Flow. 36, 780–792 (2010)CrossRef El-Genk, M.S., Ali, A.F.: Enhanced nucleate boiling on copper micro-porous surfaces. Int. J. Multiphase Flow. 36, 780–792 (2010)CrossRef
86.
Zurück zum Zitat Kosar, A., Peles, Y.: Convective flow of refrigerant (R-123) across a bank of micro pin fins. Int. J. Heat Mass Transf. 49, 3142–3155 (2006)CrossRef Kosar, A., Peles, Y.: Convective flow of refrigerant (R-123) across a bank of micro pin fins. Int. J. Heat Mass Transf. 49, 3142–3155 (2006)CrossRef
87.
Zurück zum Zitat Kosar, A., Peles, Y.: Boiling heat transfer in a hydrofoil-based micro pin fin heat sink. Int. J. Heat Mass Transf. 50, 1018–1034 (2007)CrossRef Kosar, A., Peles, Y.: Boiling heat transfer in a hydrofoil-based micro pin fin heat sink. Int. J. Heat Mass Transf. 50, 1018–1034 (2007)CrossRef
88.
Zurück zum Zitat Lie, Y.M., Ke, J.H., Chang, W.R., Cheng, T.C., Lin, T.F.: Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip. Int. J. Heat Mass Transf. 50, 3862–3876 (2007)CrossRefMATH Lie, Y.M., Ke, J.H., Chang, W.R., Cheng, T.C., Lin, T.F.: Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip. Int. J. Heat Mass Transf. 50, 3862–3876 (2007)CrossRefMATH
89.
Zurück zum Zitat Krishnamurthy, S., Peles, Y.: Flow boiling of water in a circular staggered micro-pin fin heat sink. Int. J. Heat Mass Transf. 51, 1349–1364 (2008)CrossRefMATH Krishnamurthy, S., Peles, Y.: Flow boiling of water in a circular staggered micro-pin fin heat sink. Int. J. Heat Mass Transf. 51, 1349–1364 (2008)CrossRefMATH
90.
Zurück zum Zitat Qu, W., Siu-Ho, A.: Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins. Int. J. Heat Mass Transf. 52, 1853–1863 (2009)CrossRef Qu, W., Siu-Ho, A.: Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins. Int. J. Heat Mass Transf. 52, 1853–1863 (2009)CrossRef
91.
Zurück zum Zitat Ma, A., Wei, J., Yuan, M., Fang, J.: Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces. Int. J. Heat Mass Transf. 52, 2925–2931 (2009)CrossRef Ma, A., Wei, J., Yuan, M., Fang, J.: Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces. Int. J. Heat Mass Transf. 52, 2925–2931 (2009)CrossRef
92.
Zurück zum Zitat Chang, W.R., Chen, C.A., Ke, J.H., Lin, T.F.: Subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip. Int. J. Heat Mass Transf. 53, 5605–5621 (2010)CrossRef Chang, W.R., Chen, C.A., Ke, J.H., Lin, T.F.: Subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip. Int. J. Heat Mass Transf. 53, 5605–5621 (2010)CrossRef
93.
Zurück zum Zitat Reeser, A., Bar-Cohen, A., Hetsroni, G.: High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays. Int. J. Heat Mass Transf. 78, 974–985 (2014)CrossRef Reeser, A., Bar-Cohen, A., Hetsroni, G.: High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays. Int. J. Heat Mass Transf. 78, 974–985 (2014)CrossRef
94.
Zurück zum Zitat Woodcock, C., Yu, X., Plawsky, J., Peles, Y.: Piranha Pin Fin (PPF)- Advanced flow boiling microstructures with low surface tension dielectric fluids. Int. J. Heat Mass Transf. 90, 591–604 (2015)CrossRef Woodcock, C., Yu, X., Plawsky, J., Peles, Y.: Piranha Pin Fin (PPF)- Advanced flow boiling microstructures with low surface tension dielectric fluids. Int. J. Heat Mass Transf. 90, 591–604 (2015)CrossRef
95.
Zurück zum Zitat Zhu, Y., Antao, D.S., Chu, K., Chen, S., Hendricks, T.J., Zhang, T., Wang, E.: Surface structure enhanced microchannel flow boiling. J. Heat Transf. 138, 091501- 1-13 (2016)CrossRef Zhu, Y., Antao, D.S., Chu, K., Chen, S., Hendricks, T.J., Zhang, T., Wang, E.: Surface structure enhanced microchannel flow boiling. J. Heat Transf. 138, 091501- 1-13 (2016)CrossRef
96.
Zurück zum Zitat Alam, T., Li, W., Yang, F., Chang, W., Li, J., Wang, Z., Khan, J., Li, C.: Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int. J. Heat Mass Transf. 101, 915–926 (2016)CrossRef Alam, T., Li, W., Yang, F., Chang, W., Li, J., Wang, Z., Khan, J., Li, C.: Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int. J. Heat Mass Transf. 101, 915–926 (2016)CrossRef
97.
Zurück zum Zitat Alam, T., Khan, A.S., Li, W., Yang, F., Tong, Y., Khan, J., Li, C.: Transient force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int. J. Heat Mass Transf. 101, 937–947 (2016)CrossRef Alam, T., Khan, A.S., Li, W., Yang, F., Tong, Y., Khan, J., Li, C.: Transient force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int. J. Heat Mass Transf. 101, 937–947 (2016)CrossRef
98.
Zurück zum Zitat Han, X., Fedorov, A., Joshi, Y.: Flow boiling in microgaps for thermal management of high heat flux microsystems. J. Electron. Packag. 138, 040801- 1-12 (2016)CrossRef Han, X., Fedorov, A., Joshi, Y.: Flow boiling in microgaps for thermal management of high heat flux microsystems. J. Electron. Packag. 138, 040801- 1-12 (2016)CrossRef
99.
Zurück zum Zitat Bigham, S., Fazeli, A., Moghaddam, S.: Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling. Sci. Rep. 7, 44745- 1-11 (2017)CrossRef Bigham, S., Fazeli, A., Moghaddam, S.: Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling. Sci. Rep. 7, 44745- 1-11 (2017)CrossRef
100.
Zurück zum Zitat Fazeli, A., Moghaddam, S.: A new paradigm for understanding and enhancing the critical heat flux (CHF) limit. Sci. Rep. 7, 5184- 1-12 (2017)CrossRef Fazeli, A., Moghaddam, S.: A new paradigm for understanding and enhancing the critical heat flux (CHF) limit. Sci. Rep. 7, 5184- 1-12 (2017)CrossRef
101.
Zurück zum Zitat Honda, H., Wei, J.J.: Enhanced boiling heat transfer from electronic components by use of surface microstructures. Exp. Thermal Fluid Sci. 28, 159–169 (2004)CrossRef Honda, H., Wei, J.J.: Enhanced boiling heat transfer from electronic components by use of surface microstructures. Exp. Thermal Fluid Sci. 28, 159–169 (2004)CrossRef
102.
Zurück zum Zitat Patil, C.M., Kandlikar, S.: Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling. Heat Trans. Eng. 35(10), 887–902 (2014)CrossRef Patil, C.M., Kandlikar, S.: Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling. Heat Trans. Eng. 35(10), 887–902 (2014)CrossRef
103.
Zurück zum Zitat Shojaeian, M., Kosar, A.: Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Thermal Fluid Sci. 63, 45–73 (2015)CrossRef Shojaeian, M., Kosar, A.: Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Thermal Fluid Sci. 63, 45–73 (2015)CrossRef
104.
Zurück zum Zitat Burmeister, L.C.: Convective Heat Transfer, 2nd edn. Wiley, New York (1993) Burmeister, L.C.: Convective Heat Transfer, 2nd edn. Wiley, New York (1993)
105.
Zurück zum Zitat You, S.M., Simon, T.W., Bar-Cohen, A.: A technique for enhancing boiling heat transfer with application to cooling of electronic component. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(5), 823–831 (1992)CrossRef You, S.M., Simon, T.W., Bar-Cohen, A.: A technique for enhancing boiling heat transfer with application to cooling of electronic component. IEEE Trans. Compon. Hybrids Manuf. Technol. 15(5), 823–831 (1992)CrossRef
106.
Zurück zum Zitat O’Connor, J.P., You, S.M.: A painting technique to enhance pool boiling heat transfer in saturated FC-72. J. Heat Transf. 117(2), 387–393 (1995)CrossRef O’Connor, J.P., You, S.M.: A painting technique to enhance pool boiling heat transfer in saturated FC-72. J. Heat Transf. 117(2), 387–393 (1995)CrossRef
107.
Zurück zum Zitat Chang, J.Y., You, S.M.: Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72. J. Heat Transf. 118(4), 937–943 (1996)CrossRef Chang, J.Y., You, S.M.: Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72. J. Heat Transf. 118(4), 937–943 (1996)CrossRef
108.
Zurück zum Zitat Chang, J.Y., You, S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transf. 40(18), 4437–4447 (1997)CrossRef Chang, J.Y., You, S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transf. 40(18), 4437–4447 (1997)CrossRef
109.
Zurück zum Zitat Ammerman, C.N., You, S.M.: Enhancing small-channel convective boiling performance using a microporous surface coating. J. Heat Transf. 123, 976–983 (2001)CrossRef Ammerman, C.N., You, S.M.: Enhancing small-channel convective boiling performance using a microporous surface coating. J. Heat Transf. 123, 976–983 (2001)CrossRef
110.
Zurück zum Zitat Rainey, K.N., You, S.M.: Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces. Int. J. Heat Mass Transf. 44, 2589–2599 (2001)CrossRef Rainey, K.N., You, S.M.: Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces. Int. J. Heat Mass Transf. 44, 2589–2599 (2001)CrossRef
111.
Zurück zum Zitat Rainey, K.N., You, S.M., Lee, S.: Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous surfaces in FC-72. J. Heat Transf. 125, 75–83 (2003)CrossRef Rainey, K.N., You, S.M., Lee, S.: Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous surfaces in FC-72. J. Heat Transf. 125, 75–83 (2003)CrossRef
112.
Zurück zum Zitat Arik, M., Bar-Cohen, A., You, S.M.: Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings. Int. J. Heat Mass Transf. 50, 997–1009 (2007)CrossRef Arik, M., Bar-Cohen, A., You, S.M.: Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings. Int. J. Heat Mass Transf. 50, 997–1009 (2007)CrossRef
113.
Zurück zum Zitat Sarwar, M.S., Jeong, Y.H., Chang, S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transf. 50, 3649–3657 (2007)CrossRef Sarwar, M.S., Jeong, Y.H., Chang, S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transf. 50, 3649–3657 (2007)CrossRef
114.
Zurück zum Zitat Liu, C., Yang, C.: Effect of coating layer thickness for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp. Thermal Fluid Sci. 47, 40–47 (2013)CrossRef Liu, C., Yang, C.: Effect of coating layer thickness for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp. Thermal Fluid Sci. 47, 40–47 (2013)CrossRef
115.
Zurück zum Zitat Liu, C., Yang, C.: Effect of space distance for boiling heat transfer on micro porous coated surface in confined space. Exp. Thermal Fluid Sci. 47, 163–171 (2013)CrossRef Liu, C., Yang, C.: Effect of space distance for boiling heat transfer on micro porous coated surface in confined space. Exp. Thermal Fluid Sci. 47, 163–171 (2013)CrossRef
116.
Zurück zum Zitat Parker, J.L., El-Genk, M.S.: Enhanced saturation and subcooled boiling of FC-72 dielectric liquid. Int. J. Heat Mass Transf. 48, 3736–3752 (2005)CrossRef Parker, J.L., El-Genk, M.S.: Enhanced saturation and subcooled boiling of FC-72 dielectric liquid. Int. J. Heat Mass Transf. 48, 3736–3752 (2005)CrossRef
117.
Zurück zum Zitat El-Genk, M.S., Parker, J.L.: Enhanced boiling of HFE-7100 dielectric liquid on porous graphite. Energy Convers. Manag. 46, 2455–2481 (2005)CrossRef El-Genk, M.S., Parker, J.L.: Enhanced boiling of HFE-7100 dielectric liquid on porous graphite. Energy Convers. Manag. 46, 2455–2481 (2005)CrossRef
118.
Zurück zum Zitat El-Genk, M.S., Parker, J.L.: Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling. Energy Convers. Manag. 49, 733–750 (2008)CrossRef El-Genk, M.S., Parker, J.L.: Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling. Energy Convers. Manag. 49, 733–750 (2008)CrossRef
119.
Zurück zum Zitat Bar-Cohen, A., McNeil, A.: Parametric effects of pool boiling critical heat flux in dielectric liquids. In: ASME Pool and External Flow Boiling, pp. 171–175 (1992) Bar-Cohen, A., McNeil, A.: Parametric effects of pool boiling critical heat flux in dielectric liquids. In: ASME Pool and External Flow Boiling, pp. 171–175 (1992)
Metadaten
Titel
Flow Boiling on a Porous Surface
verfasst von
Brandon M. Shadakofsky
Francis A Kulacki
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-27773-3_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.